
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

The Supervisionary proof-checking kernel
Or: a work-in-progress toward proof-generating code

Dominic P. Mulligan
Systems Research Group, Arm Research

Cambridge, United Kingdom
dominic.mulligan@arm.com

Nick Spinale
Systems Research Group, Arm Research

Cambridge, United Kingdom
nick.spinale@arm.com

Some scene setting Interactive theorem proving software
is typically designed around a trusted proof-checking ker-
nel, the sole system component capable of authenticating
theorems. Untrusted automation procedures reside outside of
the kernel, and drives it to deduce new theorems via an API.
Kernel and untrusted automation are typically implemented
in the same programming language—the “meta-language”—
usually some functional programming language in the ML
family. This strategy—introduced by Milner in his LCF proof
assistant [2]—is a reliability mechanism, aiming to ensure
that any purported theorem produced by the system is in-
deed entailed by the theory within the logic.
Changing tack, operating systems are also typically de-

signed around a trusted kernel, a privileged component re-
sponsible for—amongst other things—mediating interaction
betwixt user-space software and hardware. Untrusted pro-
cesses interact with the system by issuing kernel system
calls across a hardware privilege boundary. In this way, the
operating system kernel supervises user-space processes.
Though ostensibly very different, squinting, we see that

the two kinds of kernel are tasked with solving the same task:
enforcing system invariants in the face of interaction with
untrusted code. Yet, the two solutions to solving this problem,
employed by the respective kinds of kernel, are very different.
In this abstract, we explore designing proof-checking kernels
as supervisory software, where separation between kernel
and untrusted code is enforced by privilege.

System interface Supervisionary is a proof-checking sys-
tem for Gordon’s HOL, structured as supervisory software,
and provides a system interface to untrusted code similar
to an operating system’s system call interface. Supervision-
ary is implemented as aWebAssembly [1] (Wasm henceforth)
host, allowing us to prototype rapidly.

We use Rust as our implementation language, rather than
a functional programming language. This entails no risk of
unsoundness providing our system interface is carefully de-
signed. In particular, the kernel manages various private
heaps within which kernel objects are allocated, corre-
sponding to the paraphenalia of any HOL implementation—
type-formers, types, term constants, terms, and theorems—
and never directly exposed to untrusted code. Kernel objects

PriSC’22, January 22, 2022, Philadelphia, PA, USA
2022.

are allocated in response to system calls like:

Term.Handle.AllocateApplication(left, right, out)

Here, both left and right are kernel handles, assumed
to point-to allocated terms, whilst out points-to a buffer in
untrusted code’s memory. If neither left nor right dangle,
and the types of their referents match, a fresh handle is gen-
erated which points-to a new HOL term application object,
with internal pointers to the functional- and argument-terms.
This handle is returned to the caller via the out pointer.

The manipulation and querying of kernel objects is per-
formed defensively by the kernel itself on behalf of untrusted
code. The kernel is careful to maintain invariants such as
the inductivity of its heaps, with nodes in the kernel object
graph pointing-to allocated objects at all times.

Space constraints prevent us from describing the entire Su-
pervisionary system interface for working with, and on, ker-
nel objects. However, note that theorems are also constructed
in a similar way to terms, inductively building derivation
trees. For example, the HOL symmetry rule is exposed as:

Theorem.Handle.AllocateSym(pre, out)

Here, pre points-to an existing theorem object Γ ⊢ 𝑟 = 𝑠

and after succeeding, passing obvious checks, out contains
a handle that points-to a newly-allocated theorem Γ ⊢ 𝑠 = 𝑟 .

Note that one interesting consequence of this style of im-
plementation is the ability to provide concise specifications
of Supervisionary’s system interface functions. Essentially,
the Supervisionary kernel is a grand exercise in pointer ma-
nipulation, and as such our system call specifications can
be expressed as Hoare Triples, using Separation Logic [4] as
our assertion language. Writing h ↦→trm Application(l, r)
to assert that the handle h points-to a term application (of
the term pointed-to by 𝑙 to the term pointed-to by 𝑟 ), and
writing out ↦→ b to assert that out points-to the Boolean
value b, we have:

{ℎ ↦→trm Application(l, r)}
Term.Handle.IsApplication(h, out)

{out ↦→ True}

(Here, the triple {𝑃}𝐶{𝑄} asserts that if the command 𝐶

executes in a state concordant with 𝑃 then the command
succeeds and produces a state concordant with 𝑄 .)

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PriSC’22, January 22, 2022, Philadelphia, PA, USA Dominic P. Mulligan and Nick Spinale

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Note that Supervisionary lacks any analogue of the tradi-
tional LCF meta-language. Kernel and automation are now
decoupled, and code written in any language can “drive” the
kernel, providing it produces binary-compatible executables.

We now turn to speculation around potential uses of Super-
visionary. Exploring what follows is still a work-in-progress.

Runtime verification Given our use of Wasm, we could
extend our system interface by also implementing the Wasm
System Interface [5]—a POSIX-like interface for Wasm. This
would transform Supervisionary from a mere programmable
proof-checker into a general-purpose sandbox, capable of ex-
ecuting arbitrary programs, albeit with an unusual interface
for constructing proofs.

But: what happens if we blur the lines between Supervision-
ary’s interfaces for system access and proof-checking?

Untrusted code executing under Supervisionary’s super-
vision could be challenged to prove some theorem each time
it wished to open a file on the filesystem, or otherwise per-
form some side-effect. These theorems could be correctness
or security-related theorems, corresponding to a prevailing
policy in force. Moreover, as Supervisionary is capable of
capturing the runtime state of untrusted code, these chal-
lenges can be HOL predicates that are functions of the reified
runtime state of untrusted code, the kernel, and the argu-
ments, and name of, the invoked system call.

Two predicates of interest are _𝑘._𝑢._𝑠.⊤ and _𝑘._𝑢._𝑠.⊥.
Here, ⊤ and ⊥ are truth and falsity, and 𝑘 , 𝑢, and 𝑠 the kernel
and untrusted code states, and packed system call metadata,
reified as HOL data, at the point of invocation of the system
call. One can always prove {} ⊢ ⊤ and therefore _𝑘._𝑢._𝑠.⊤
represents no restriction, whereas {} ⊢ ⊥ is never provable,
absent axioms, with _𝑘._𝑢._𝑠.⊥ representing a “closing off”
of a system call. By making the challenge a function of the
system call name and arguments, this closing off can be
specific, banning a process from calling a particular system
call, or a system call with a particular set of arguments,
allowing us to mimic mechanisms like seccomp from Linux.
We can go further: metadata about the behaviour of a

running process could be maintained—for example, a record
of the system calls invoked by a process, thus far. This record
could be used in forming security or correctness challenges,
for example by forcing untrusted code to prove that writes
to a socket only ever happen after a read, or reads and writes
on sockets satisfy some protocol. In short, HOL acts as lingua
franca between kernel and untrusted code, through which
arbitrarily complex policies may be expressed.

Jailing, wherein a process voluntarily sheds capabilities,
is common in existing operating systems. This can be cap-
tured in Supervisionary by allowing a process to dynamically
replace the prevailing policy, 𝜙 , with a new policy 𝜓 , after

proving that𝜓 is a refinement of𝜙 : {} ⊢ ∀𝑘.∀𝑢.∀𝑠 .𝜓 𝑘 𝑢 𝑠 −→
𝜙 𝑘 𝑢 𝑠 . Note that this expresses that the states described by
𝜓 are a subset of those described by 𝜙 .

Note that this idea shares some similarities with proof
carrying code, wherein binaries are accompaniedwith (skele-
ton) proofs of their adherence to some policy, and these
proofs checked by the operating system prior to execution [3].
However, the ideas sketched above generalise this: proofs
can be generated dynamically, as the program executes, and
could more aptly be called proof generating code. Pro-
cesses and the Supervisionary kernel work together to come
to a “mutual understanding” that the behaviour of the pro-
cess is indeed concordant with the prevailing policy.

Restructuring proof-checking tools Existing tools in the
HOL family could be refactored around Supervisionary by
changing their kernels to act as frontends to the Supervi-
sionary kernel for untrusted automation routines. Arguably,
this increases the robustness of existing tools, enforcing sep-
aration by isolation, rather than module boundaries. More
interestingly, this also means that Supervisionary acts as
a mechanism for “transporting” definitions and theorems
between systems within the wider HOL family: systems are
capable of referring to, and manipulating, kernel objects
produced by other systems through Supervisionary kernel
handles. With this, we can also bootstrap a full theorem-
proving environment, with associated libraries of content,
on top of Supervisionary without writing it from scratch.
Our prototype acts as both programmable proof-checker

and general-purpose sandbox. The previous section high-
lighted that this idea can be used to enforce runtime prop-
erties of programs. But, we can also use this blurring to
import ideas from the operating systems community into
the design of proof-checking software itself. For example,
libraries of mathematical theorems and definitions could be
presented to Supervisionary’s users via a hierarchical or tag-
based file-system, and explored with command-line tools in
an interactive shell atop the Supervisionary kernel.

Lastly Supervisionary’s dual interpretation as sandbox and
proof-checker blurs the boundary between static and run-
time verification, and between proof-checker and sandbox.
Whilst proofs can be generated by executables themselves at
runtime, they could also be generated interactively by users,
prior to the execution of a program, or even generated for
use by a program by other programs.
For example, the operational semantics and instruction

decoding functionality of Wasm is clearly embeddable in
HOL [6]. Using this, properties of a program 𝑃 to be executed
under Supervisionary could be established statically, and
registered with the kernel, perhaps interactively by a user
or by another program executing before 𝑃 executes. This
theorem can then be used by 𝑃 in closing challenges from
Supervisionary, issued at runtime, tying the correctness of 𝑃
to its execution.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

The Supervisionary proof-checking kernel PriSC’22, January 22, 2022, Philadelphia, PA, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
[1] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael

Holman, Dan Gohman, LukeWagner, Alon Zakai, and J. F. Bastien. 2017.
Bringing the web up to speed with WebAssembly. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Albert Cohen and Martin T. Vechev (Eds.).
ACM, 185–200. https://doi.org/10.1145/3062341.3062363

[2] Robin Milner. 1972. Logic for Computable Functions: description of a
machine implementation.

[3] George C. Necula. 1997. Proof-Carrying Code. In Conference Record
of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, Paris,
France, 15-17 January 1997, Peter Lee, Fritz Henglein, and Neil D. Jones
(Eds.). ACM Press, 106–119. https://doi.org/10.1145/263699.263712

[4] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE
Computer Society, 55–74. https://doi.org/10.1109/LICS.2002.1029817

[5] The WebAssembly working group. 2021. The WebAssembly System
Interface (WASI). https://wasi.dev.

[6] Conrad Watt. 2018. Mechanising and verifying the WebAssembly speci-
fication. In Proceedings of the 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, Jan-
uary 8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM, 53–65.
https://doi.org/10.1145/3167082

3

https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/263699.263712
https://doi.org/10.1109/LICS.2002.1029817
https://wasi.dev
https://doi.org/10.1145/3167082

	References

