
Mosquito: an implementation of higher-order logic
(Rough diamond)

Dominic P. Mulligan?

Computer Laboratory, University of Cambridge

Abstract. We present Mosquito: an experimental stateless, pure, largely
total lcf-style implementation of higher-order logic using Haskell as a
metalanguage. We discuss details of the logic implemented, kernel design
and novel proof state and tactic representations.

Mosquito is an experimental lcf-style implementation of higher-order logic
(hol) using Haskell as its metalanguage. The system is under active development.
Some simple proofs, both forward and backward, have been performed in the
system and various theories are currently under construction. Mosquito’s source
code may be obtained anonymously from a public Mercurial respository and is
developed with Glasgow Haskell Compiler (ghc) 7.6.2.1

The motivation behind Mosquito’s development is threefold. First, we wish
to experiment with the development of an lcf-style implementation of pure
hol in idiomatic Haskell. Whilst Haskell shares many similarities with ml, the
typical metalanguage of an lcf-style implementation, it also has many important
differences, including: a non-strict evaluation semantics, the lack of ml-style
modules, type classes, an institutionalised affinity for purity, widespread use
of generic programming, metaprogramming via Template Haskell, type-level
programming and other advanced type language features, a novel approach to
concurrency via software transactional memory, etc. How these features may be
leveraged in a hol implementation is an interesting question.

Second, we envision the possibility of writing Haskell executables that use
Mosquito as a subcomponent for reasoning in hol. We see a host of possible
applications from novel educational software, to programming language seman-
tics animation tools, to writing high-assurance Haskell monitoring software that
uses Mosquito to check security or cryptographic properties internally, and so on.
Put into context, we see Mosquito eventually being more alike HOL4 [GM93] or
HOL Light [Har09]—as an embeddable reasoning subcomponent, or a proof as-
sistant as a service—rather than Isabelle [WPN08] or Matita [ARST11], dedicated
standalone formal development systems.

Third, we see Mosquito as a prototype implementation of a hol written with
the express purpose of being relatively straightforward to formalise in another
? We wish to thank Anthony Fox, Ohad Kammar, Peter Sewell and Thomas Tuerk for
many useful comments and discussions about this work.

1 https://bitbucket.org/MosquitoProofAssistant/mosquito

https://bitbucket.org/MosquitoProofAssistant/mosquito

proof assistant. Mosquito is written in a stateless, pure and largely total style—
folklore bywords for ‘easy to formalise’. We have expressly disavowed the use of
exceptions to signal failure in favour of error monads. Further, we have adopted
a Wiedijk-style stateless kernel [Wie11] in Mosquito to avoid the use of mutable
references (or IORefs in Haskell parlance), and the associated problem of the IO
monad proliferating within the types of functions exported by the kernel.

Under Wiedijk’s scheme, a constant C is equal to a constant C′ if they share
the same name and definition, in contrast with other systems such as HOL Light,
where an imperative database of existing constant names is maintained in the
kernel, preventing a user from redefining a previously defined constant, lest C
be defined to be both 0 and 1 thus permitting a deduction of ` 0 = 1. In HOL
Light and similar systems, constants need only be tested for equality based on
their names, as we may safely rely on constants with differing definitions having
different names. In Mosquito, defining a constant C to be both 0 and 1 is consid-
ered ‘safe’—at least from a point of view concerned purely with consistency of
the logic—as a deduction of ` 0 = 1 is not possible. A similar scheme is used to
tag type formers, and the associated abstraction and representation constants, for
new types with their defining theorems.

Lastly, a note on the choice of logic implemented in Mosquito. hol is a simple
(described in a handful of inference rules), well understood and widely imple-
mented logic, due to its proven ability in capturing a wide swathe of mathematics
and computer science. By implementing hol in Mosquito we aim to be able to
export and import proofs to and from other implementations via OpenThe-
ory [Hur11]. Further, by maintaining compatibility with other hol systems we
may be able to reuse existing automated proof tools, allowing us to achieve a
significant degree of automation within Mosquito, until automated proof tools
and decision procedures can be written for the system itself, with relatively little
outlay of effort [KH12].

Many hol-like systems currently exist, though two stand out as being par-
ticularly related. Wiedijk’s Stateless HOL [Wie11] (progenitor of the stateless
approach implemented in Mosquito) is a modification of the HOL Light system,
wherein the stateful database of existing constant names has been moved out-
with the kernel. Empirical testing suggests that Wiedijk’s modifications to HOL
Light entail only a moderate performance decrease when compared to vanilla
HOL Light. Austin and Alexander’s HaskHOL kernel [AA13] is a stateless ker-
nel for an extension of hol with System-F style type quantification and explicit
polymorphism. HaskHOL is also implemented in Haskell.

Mosquito’s logic

Mosquito implements a similar higher-order logic to the HOL Light system.
Terms t, u, and so on, are terms of the simply-typed λ-calculus extended with
constants. The full derivation rules for the core logic are presented in Figure 1.
Here, Γ and∆ range over arbitrary contexts, {} is the empty context, fv(t) is the
set of free variables of a term, t[~α/~φ] is a parallel substitution instantiating types

(t =α u)
(alpha)

{} ` t = u

Γ ` t = u
(symm)

Γ ` u = t

Γ ` t = u ∆ ` u = v
(trans)

Γ ∪∆ ` t = v

(t : Bool)
(assm)

{t} ` t

Γ ` t ∆ ` u
(asym)

(Γ − u) ∪ (∆− t) ` t = u

Γ ` t = u ∆ ` u
(eqmp)

Γ ∪∆ ` t

Γ ` t = u
(abs)

Γ ` λa:φ.t = λa:φ.u

Γ ` t = u ∆ ` v = w
(comb)

Γ ∪∆ ` t · v = u · w
(beta)

{} ` λa:φ.t · u = t[a/u]

(a 6∈ fv(t))
(eta)

{} ` λa:φ.(t · a) = t

Γ ` t
(inst)

Γ [~b/~u] ` t[~b/~u]

Γ ` t
(tyinst)

Γ [~α/~φ] ` t[~α/~φ]

in terms, and Γ [~α/~φ] is its pointwise extension to a context (similarly for parallel
capture-avoiding substitutions t[~b/~u] and Γ [~b/~u]).

Mosquito follows the lcf design philosophy. The kernel exposes several
abstract types: Term, Type and Theorem. Modulo bugs in the design of Haskell
or the ghc implementation the only way to construct a non-bottom inhabitant of
Theorem is via appeal to the implementation of the rules in Figure 1.

The kernel exports two primitive type formers: Bool, the Booleans, and− ⇒ −,
the function space arrow. Each type former is equipped with an arity, a natural
number detailing the number of types one must supply to the former to construct
a new type. Call a fully-applied type former a type. The primitive type Bool has
arity 0, whilst the primitive type former− ⇒ − has arity 2. The kernel api ensures
one may only construct ‘arity correct’ types.

The kernel exports a single primitive constant, − = −, the equality constant,
of type α⇒ α⇒ Bool. Equalities in Figure 1, t = u, are therefore implemented
merely as applications (= t)u with syntactic sugar sprinkled atop. Terms within
the kernel are fully type annotated and only type-correct terms may be con-
structed. Figure 1 should be interpreted as including a series of hidden typing
constraints. Under this scheme, the side condition stating tmust be a formula—a
term of type Bool—in rule (assm) makes sense, and the construction of a term
t = u necessarily implies that the terms t and u possess the same type.

Mosquito implements slightly stronger inference rules than the HOL Light
kernel. Rule (alpha) bakes α-equivalence, implemented using ‘nominal’-style
swappings, into Mosquito’s reflexivity rule. In HOL Light a weakened form of
(eta) is axiomatised outwith the kernel. Similarly, a weakened form of (beta)
is implemented in the HOL Light kernel. The strengthened versions of η- and
β-equality are then supplied later, as derived rules. We choose to implement the
full versions of these rules directly in Mosquito’s kernel.

Mosquito’s logic may be extended in three ways. A new constant may be de-
fined as equal to an existing term, modulo restrictions on the free (type-)variables
of that term. A new inhabited type may be defined in provable bijection with
a subset of an existing type. Lastly, a formula may be asserted freeform as an

axiom. As axioms are ‘dangerous’ from a consistency point of view, Mosquito,
indelibly marks any theorem obtained directly or indirectly from an axiom.

Tactics and the proof state

Mosquito supports forward proof directly by implementing the rules in
Figure 1. For more complex proofs backward proof may be more amenable.
Backward proof (as well as amixture of the two) is supported via tactics operating
on a proof state.

A proof state consists of an incomplete derivation tree—a rose tree with an
additional constructor Hole corresponding to a proof obligation—coupled with
metadata. Each Hole has a list of assumptions, the goal to prove at that hole,
and a flag signalling whether that goal is selected or unselected. Branches in the
derivation tree are annotated by justification functions. These are used to replay
the proof in a forward direction once completed, collapsing a derivation tree into
a Theorem. The proof state api exposes three key functions, where Inference is
a (monadic) type constructor used to signal failure:

mkConjecture :: Term → Inference ProofState
qed :: ProofState → Inference Theorem
act :: ProofState → Tactic → Inference ProofState

A new proof state is constructed using mkConjecture, taking a formula (fail-
ing otherwise) as input and creating a derivation tree consisting of a selected
hole. This hole has no assumptions and has the input term as its goal.

A theorem is obtained from a completed backward proof using qed. This
function fails if the justification functions annotating the derivation tree do not
correctly replay the proof in a forward direction, a theorem that fails to match the
original conjecture is synthesised, or if the derivation tree remains incomplete.

Backwards proof is progressed via a tactic application using the act function.
Intuitively, tactics are applied to every selected goal at once, where zero or many
goals may be selected at any one time. A tactic applied via act must succeed
on every selected goal for act itself to succeed. If a tactic succeeds at a goal it
is transformed into a branch in the derivation tree with new selected holes as
children, corresponding to the subgoals generated by the tactic. This style of tactic
application is similar to a style adopted in Matita [ARST11], with the advantage
of permitting sharing of proof chunks across multiple goals.

In systems such as HOL Light, tactics are pieced together via tactic-valued
functionals called tacticals. In contrast, we embed the abstract syntax tree of a
proof description language explicitly as an algebraic data type:

data Tactic =
Apply PreTactic | (�) Tactic Tactic | Id | FailWith String |
Try Tactic | (⊕) Tactic Tactic | Repeat Tactic | SelectGoalsI [Int]

The semantics of proof descriptions is given by the act function. Assume p is
an arbitrary proof state. Then:

– A call to act p (FailWith err) fails on every selected hole. A call to act p Id
succeeds on every selected hole, keeping the hole (and thus the proof state
p) unchanged.

– A call to act p (Try t) tries to apply t at each selected hole. If t fails to
transform a given hole, the original hole is successfully reinstated.

– A call to act p (Repeat t) tries to applies t at each selected hole, and then
subsequently at any new selected holes opened. The tactic tmust apply at
least once, with the last proof state successfully modified by t returned.

– A call to act p (t � t′) first applies t to each selected goal. If this does not
fail, then t′ is applied to each selected goal, otherwise the call fails.

– A call to act p (t⊕ t′) tries to apply t to each selected goal. If this fails, then
t′ is applied to each selected goal instead.

– A call to act p (SelectGoalsI is)marks a goal with identification number
i as being selected if i ∈ is, otherwise marks the goal as unselected.

Apply lifts a pretactic into a tactic. Intuitively, a pretactic is a function that edits a
selected hole in the derivation tree. A pretactic is supplied with the assumptions
and goal to prove at that hole, and may either choose to fail with an error at
that hole or succeed, returning a list of new subgoals which are spliced into
the derivation tree as new holes. Pretactics have an entirely ‘local’ view of the
derivation tree—they see only information present at a hole, and are not supplied
with information about the rest of the tree.

Wediscuss alphaPreTactic as an example,which closes subgoalsA1 . . . An `?
t = u where t and u are α-equivalent. The pretactic receives the assumptions
A1 . . . An and the goal to prove t = u at a given hole. It ensures the goal is an
equality, and the equated terms t, u are α-equivalent. If so, the pretactic generates
an empty list of new subgoals, coupled with a justification function that makes
use of the implementation of (alpha) from Figure 1 to ‘reverse’ its operation.

The Tactic embedding may be minimalist, but more complex tactics2 may
be written over this type. For instance, the tactic repeatN repeatedly applies a
tactic m times to a given proof state:
repeatN :: Int → Tactic → Tactic
repeatN 0 tactic = Id
repeatN m tactic = tactic � repeatN (m - 1) tactic

More complex tactics ‘compile’ down into more primitive tactics. This sits
in contrast to other systems where complex tactics are created by combining
together primitive tactics with tacticals.

Embedding tactics as a data type permits us to write ‘metatactics’, or tactics
that inspect and change other tactics. The act function induces equivalences on
Tactic: say that two tactics t and t′ are equivalent if for any p their resulting
transformation of p using act is identical. For example, Id � t is equivalent to
t, and Repeat (FailWith err) is equivalent to FailWith err. Following this, we
maywrite a tactic optimisewhich rewrites its input according to these equational
laws, producing an equivalent but ‘optimised’ output.
2 Henceforth we abuse language and call any Tactic-valued Haskell function a tactic.

Several tactics cause divergence of act, for example Repeat Id. Adopting the
position that diverging tactics are buggy, we may write a tactic replaceBottoms
which inspects its input, replacing diverging tactics with FailWith err, where
err contains information useful in tracking down the source of the divergence.

Lastly, we may examine the small-step evolution of the proof state under
the action of a given tactic using a ‘debugger’, which takes a proof state and a
tactic and returns Inference (ProofState, Maybe Tactic). For example, debug,
called on tactic t � t′ and proof state p, first applies t to p. If this succeeds, it
successfully returns the new proof state paired with t′, otherwise failing.

Conclusions

Mosquito is a stateless implementation of hol written in Haskell. Some back-
ward and forward proofs of simple conjectures have been carried out in the
system using Mosquito’s tactic and proof state api. With Mosquito we aim to
provide an embeddable library for reasoning in hol within Haskell applications.
We also aim to use Mosquito to experiment with Haskell’s novel language and
type system features within the context of a proof assistant, and to provide a hol
written with the express intention of being easy to verify correct. We leave this
verification as potential future work.

Many other avenues of further work also remain, not least the further de-
velopment of Mosquito. How quickly Mosquito can check large proofs is an
open question, and could be resolved by importing existing proofs written in e.g.
HOL Light into the system via OpenTheory. Lastly, how Mosquito’s embedding
of tactics as a proof description language affects the set of tactics that may be
written in the system, for good or for bad, remains to be seen and requires further
experimentation.

References
AA13. Evan Austin and Perry Alexander. Stateless higher-order logic with quantified

types. In ITP, pages 469–476, 2013.
ARST11. Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.

The Matita interactive theorem prover. In CADE, volume 6803 of Lecture Notes
in Computer Science, pages 64–69, 2011.

GM93. Michael J. C. Gordon and TomMelham. Introduction to HOL, a theorem proving
environment for higher-order logic. Cambridge University Press, 1993.

Har09. JohnHarrison. HOLLight: an overview. In TPHOLS, LectureNotes in Computer
Science, pages 60–66, 2009.

Hur11. Joe Hurd. The OpenTheory standard theory library. In NFM, Lecture Notes in
Computer Science, pages 177–191, 2011.

KH12. Ramana Kumar and Joe Hurd. Standalone tactics using OpenTheory. In ITP,
pages 405–411, 2012.

Wie11. Freek Wiedijk. Stateless HOL. In TYPES, Electronic Proceedings in Theoretical
Computer Science, pages 47–61, 2011.

WPN08. Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle
framework. In TPHOLS, Lecture Notes in Computer Science, pages 33–38, 2008.

	Mosquito: an implementation of higher-order logic

