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Abstract
Recent years have seen remarkable successes in rigorous engineer-
ing: using mathematically rigorous semantic models (not just ide-
alised calculi) of real-world processors, programming languages,
protocols, and security mechanisms, for testing, proof, analysis, and
design. Building these models is challenging, requiring experimen-
tation, dialogue with vendors or standards bodies, and validation;
their scale adds engineering issues akin to those of programming
to the task of writing clear and usable mathematics. But language
and tool support for specification is lacking. Proof assistants can be
used but bring their own difficulties, and a model produced in one,
perhaps requiring many person-years effort and maintained over an
extended period, cannot be used by those familiar with another.

We introduce Lem, a language for engineering reusable large-
scale semantic models. The Lem design takes inspiration both from
functional programming languages and from proof assistants, and
Lem definitions are translatable into OCaml for testing, Coq, HOL4,
and Isabelle/HOL for proof, and LaTeX and HTML for presentation.
This requires a delicate balance of expressiveness, careful library
design, and implementation of transformations – akin to compilation,
but subject to the constraint of producing usable and human-readable
code for each target. Lem’s effectiveness is demonstrated by its use
in practice.

Keywords Lem; real-world semantics; specification language;
proof assistants

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—Specification techniques; D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Specification languages and
Tools; D.2.4 [Software Engineering]: Formal methods and Correct-
ness Proofs
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1. Introduction
Recent years have seen a rise in rigorous engineering: research
projects making essential use of mathematically rigorous semantic
models or specifications of key computational abstractions, such
as processor architectures, programming languages, protocols, and
security enforcement mechanisms. These models are used in many
different ways: to elucidate the behaviour of an existing real-world
abstraction, as oracles to test implementations against, as the under-
lying assumptions or goals of verification by mechanised interactive
proof, as an explicit basis for program analysis, and as a medium for
design. We set the context for our work by first recalling a few rep-
resentative examples. Experimental semantics research, exploring
existing real-world abstractions by a combination of empirical inves-
tigation and standards formalisation, has addressed the TCP/IP proto-
cols [6], the sequential and concurrent behaviour of x86, Power, and
ARM multiprocessors [10, 11, 30, 32], JavaScript [7, 27], the (se-
quential) C standard [9], and the concurrency model of C/C++11 [3];
these typically require models that can be used as oracles to decide
whether some experimentally observed behaviour is permitted in the
model, or to enumerate all the model-permitted behaviour. Verifica-
tion work using mechanised interactive proof has produced verified
compilers [19, 36, 40], verified operating system kernels [17], and
verified secure fault isolation [24], each based on rigorous models
of the underlying processor or language and of the abstraction the
verified system aims to provide. Static and dynamic analysis must
either build in implicit assumptions or be explicitly based on such a
model, e.g. for binary analysis w.r.t. processor architectures [20].

This is a remarkable success story, contrasting with the state
a decade ago when semantics was largely restricted to small ide-
alised calculi: the above all involve models of (identified aspects
of) real-world computer systems. But it raises its own problems.
Constructing a substantial model is a major undertaking:
• one needs to understand the system being modelled in detail,
often with experimental investigation of a de facto standard that
has not been clearly specified even in prose;
• one has to deal with large-scale specifications, more like modest-
scale programs (1–10k lines of specification) than the page or two
of pencil-and-paper mathematics of a small calculus, with all the
engineering and readability issues that entails; and
• models need extensive experimental validation, to establish con-
fidence (in the absence of full formal verification down to the gate
level) that they are correct models of reality; they need theoretical
validation, e.g. by proofs of sanity properties showing that they are
internally consistent; and they need social validation, discussion
with the relevant vendors, standards committees, or community to



ensure that they capture the right intent (especially for specifica-
tions that are looser than any particular implementation).

But language and tool support for such modelling and specification
activities is lacking. As we discuss below, there has been no language
that is specifically designed for the task, making model development
more awkward than it should be, and, more importantly, reuse of
models in different contexts is challenging and rarely achieved.
For example, the above-cited works independently developed no
less than six partial models of x86 instruction behaviour and two
of JavaScript, and the literature contains yet more. For a small
application-specific model this is not a problem, but where model
development and validation may take person-years of effort such
duplication of effort is not viable. The best one could do at present
to make a model reusable in multiple provers would often be ad hoc
porting (with scripts and hand-editing), but that is highly error prone,
and at odds with the fact that these models must be maintained and
developed over time.

Our thesis is that, as the subject matures and rigorous engineering
becomes more widespread, the community needs to amortise this
effort, establishing a collection of models of the basic abstractions,
those processor architectures, programming languages and protocols
that are relatively stable interfaces that computer systems depend on.
These should be comprehensive and well-tested, and they have
to be made available in multiple forms to enable their use for
many different purposes by different groups. This should lead to
a virtuous circle: the prospect of reuse motivating more complete
modelling and validation, and this enabling new research that would
be impossible without substantial models.

In this paper we work towards this goal. Our main contribution
is the design and implementation of a modelling and specification
language, Lem, to support the engineering of reusable large-scale
semantic models.

Related work To explain the distinctive features of Lem we first
consider the alternatives. In some cases one can use a conventional
typed functional programming language (such as Haskell, OCaml,
or SML) to express a model as a pure functional reference imple-
mentation or test oracle. This gives the advantages of a mature and
familiar programming language, but it does not give a basis for
proofs about the model, and one often needs more logical expres-
siveness, especially for loose specifications. In particular, one often
needs good support for sets and higher-order logic, inductive rela-
tion definitions, and a clearer understanding of when one is in the
fragment of the language with a direct mathematical interpretation.
For reasoning, one typically turns to a proof assistant such as ACL2,
Agda, Coq, HOL4, Isabelle/HOL, Matita, PVS, or Twelf. These
provide very powerful proof tooling but are hard to master, and their
definition languages have accreted functionality over time rather
than being designed top-down as modelling/specification languages;
inevitably introducing various idiosyncrasies to the language.

More seriously, the community suffers from proof-assistant
lock-in: the difficulty in becoming fluent in their use means that
very few people can use more than one effectively, and the field is
partitioned into schools around each. Indeed, even within some of
our own projects we have had to use multiple provers due to differing
local expertise. The differences between the tools mean that it is a
major and error-prone task to port even the definition of a model
from one to another, rarely attempted even where much effort has
gone into model development. Sometimes this is for fundamental
reasons: for example, definitions which make essential use of the
dependent types of Coq may be hard or impossible to practically port
to HOL4 or Isabelle/HOL. However, many of the examples cited
above are logically undemanding: they have no need of dependent
types, the differences between classical and constructive reasoning
are not particularly relevant, and there is often little or no object-
language variable binding. In such cases, where a model is basically

expressible in the intersection of the definition languages of several
proof assistants, it should in principle be possible to port definitions;
the challenge is one of robustly translating between the source
languages, definition styles, and libraries. This is made particularly
hard by the sensitivity of proof assistants to whether definitions are
idiomatic: given two logically equivalent definitions, one may be
much more amenable than the other to machine-assisted proof or
executable code generation in a particular prover.

Previous work has established connections between different
provers at the level of their internal logics [1, 12–15, 39]. These
enable results proved in one system to be made available in another,
but they do not provide usable source definitions. Between provers
and programming languages, all the provers mentioned above
support some kind of code generation; the other direction is less
developed, though Haskabelle [28] provides a mapping from a
fragment of Haskell to Isabelle source.

There are, of course, also many other specification tools, often
with extensively engineered support for particular kinds of spec-
ification. For some examples in current use (this is by no means
exhaustive) we mention ASF+SDF [35], K [29], and Maude [23]
(all of which support some form of term rewriting), Ott [33] (for
inductive relations over inductive syntax), and PLT Redex [16] (for
reduction semantics); other tools target SMT and first-order prob-
lems. These all have advantages in their particular domains, but
they are tackling rather different problems to Lem (with its focus
on specification portable across multiple provers), and they lack
the definitional expressiveness of higher-order logic and inductively
defined relations. The need for both of these in a range of our large-
scale specifications is what motivated us to develop Lem, and the
choice of a language expressive enough for them but not so rich (e.g.
with general dependent types) that it cannot be translated to multiple
targets is central to Lem’s design.

Contribution Lem aims to combine the ease-of-use and uniform
language design of programming languages with the logical expres-
siveness required for specification of the established proof assistants.
Most importantly, it aims to support portable specifications, that can
be used in multiple provers (it is not itself a proof tool). Spelling out
our contribution in more detail:

A language of executable mathematics Lem is oriented towards
(though not restricted to) executable definitions; the executable
fragment of Lem can be translated into OCaml code to use as a test
oracle for experimental validation, or for model exploration.

Support for multiple proof-assistant targets Lem definitions can
be translated to proof-assistant definitions for Coq, HOL4, and
Isabelle/HOL, to support interactive proof. The language design
involves a delicate balance of expressiveness: expressive enough
for a range of large-scale modelling tasks, but restricted enough
to make it translatable into usable definitions in the various proof-
assistant targets, as idiomatically as we can achieve by automatic
translation (reasonably well for HOL4 and Isabelle/HOL; somewhat
less so for Coq). These translations are related to, but interestingly
different from, conventional programming-language implementation
techniques; for example in the translations of equality and pattern
matching. Perhaps surprisingly, in some cases it is best to translate
into mathematically different code in different targets. The design
and implementation choices that make this and the next point
possible are described in §3.

Human-readable output It is also important to make the proof
assistant generated definitions human-readable: Lem preserves
the source structure and comments where it can (modulo the
tension with generating idiomatic code), and it uses the same
machinery to give the user control of layout for generation of
production-quality LaTeX that can be used directly in papers



and documentation, avoiding the error-prone and tedious manual
typesetting of definitions for publication that can be necessary for
some proof assistants. Lem can also generate simple HTML.

Programming-language engineering The language is designed
using best-practice programming-language techniques, taking ad-
vantage of the opportunity to do a coherent design without the
backwards-compatibility issues faced by proof assistants that have
been extended over many years. The syntax and type system of Lem
itself are specified using the Ott tool [33], which helped make the
design regular (without odd corner cases); it should be easy to use
by those familiar with typed functional languages such as OCaml,
Haskell, or SML. Lem appears to the user much like a compiler:
there is no need to learn a complex interface, and the implementation
provides prompt feedback (e.g. for type errors) to the user, so that
one can do type-based development and refactoring of specifications
in the style of development in a typed programming language.

Library design A specification language needs a good standard
library just as much as a programming language does. In §4 we
describe the Lem library support and, more challenging, how it has
to be related to the differing prover libraries.

Substantial usage Lem has been developed since 2010 and its
effectiveness is demonstrated by a number of applications, with
both academic and industrial impact. We begin in §2 by recalling
those, to explain more clearly what it is (and is not) good for,
and discuss one in more detail in §5. Some of the motivation
behind Lem, and its initial implementation, was first presented in a
short “Rough Diamond” paper [26]. Lem and its documentation are
available (under a BSD license from a Bitbucket repository) from
http://www.cl.cam.ac.uk/~pes20/lem/.

2. Lem in practice
To explain more concretely the kind of specification work that Lem
is aimed at, and to demonstrate its practical effectiveness as a tool for
large-scale specification, we describe the main Lem developments
produced to date. These underlie multiple academic publications
(six in POPL, PLDI, and CAV) and have had industrial impact,
in clarifying the IBM Power and ARM concurrency behaviour,
on the C/C++11 ISO standard concurrency semantics, and on
the compilation scheme of the latter to Power and ARM. For
each development we give the number of non-comment lines of
specification (LoS) and the Lem targets used, and comment on the
mathematical style of the specification.

Sarkar et al. [30] describe an operational model (3008 LoS) for
the relaxed-memory behaviour of IBM Power and ARM multiproces-
sors. The executable Lem-generated OCaml code forms the kernel
of the ppcmem tool (http://www.cl.cam.ac.uk/~pes20/ppcmem)
for exhaustive and interactive exploration of the model on examples;
that and the generated LaTeX supported experimental validation
and extensive discussion with an IBM architect during model de-
velopment; and the generated Coq has been used for some modest
experiments with mechanised proof (unpublished). This model uses
a combination of mathematical styles. For specifying the multipro-
cessor memory subsystem it has an abstract machine built over sets,
relations, and lists of memory events, while the thread semantics
involves abstract syntax trees of assembly and micro-operation in-
structions. These each define labelled transition systems (LTSs),
which are combined with an inductive-relation top-level parallel
composition.

Batty et al. [3] describe an axiomatic memory model and var-
ious sub-models (1517 LoS) for concurrency in the C/C++11
standards. The Lem-generated OCaml and HTML form the ker-
nel of the cppmem tool, again with a web interface for interac-
tive and exhaustive exploration of the model on examples (http:

//svr-pes20-cppmem.cl.cam.ac.uk/cppmem/); that and the gen-
erated LaTeX supported discussion with the ISO standards commit-
tee to develop the model and improve the standard, and cppmem has
been used by some GCC and Linux developers and within ARM.
The generated HOL4 code has been used for mechanised proof of
metatheory, and the generated Coq and Isabelle code have also been
used for proof experiments. The bulk of this development comprises
predicates over candidate executions, represented as sets of events
with various order relations; we describe it in more detail in § 5.

Batty et al. [4, 31] describe extensions to the above Power
and C/C++11 models and correctness proofs for a compilation
scheme from C/C++11 concurrency primitives to Power concurrency
primitives; these are hand proofs but with lemmas expressed in Lem
(931 LoS); this is a useful middle ground between LaTeX and fully
mechanised proofs.

Mador-Haim et al. [21] describe an axiomatic memory model
for Power and mappings between that and the operational model
above (1155 LoS), again with hand proofs; the generated OCaml
code was used to test equivalence of the two models on examples
and the generated LaTeX to define the model in the paper.

The specification of the de facto standard of the TCP/IP network
protocols and the Sockets API by Bishop et al. [6] was originally
expressed in HOL4 and has now been ported to Lem (6681 LoS).
The style is essentially pure higher-order functional programming,
but with sets and maps, a relational monad, inductive relations,
and logic. The port to Lem was essentially straightforward except
that the original specification made heavy use of HOL4’s advanced
features for user-defined syntax, while Lem has a more uniform but
more restricted syntax; these had to be manually unpicked.

The Ott definition of OCamllight by Owens [25], originally used
to generate HOL4, has been adapted to generate Lem (3133 LoS
in Lem, from 4253 lines of Ott source). OCamllight uses a typical
mathematical style for a typed functional programming language
semantics, with inductive relations specifying a type system and
small-step operational semantics. Lem’s inductive relation support
was general enough to support a direct and automatic translation
from Ott. This development is of a different character than the others
in that here we are translating into Lem, showing its potential to be
used as a general purpose front-end for domain-specific tools (here
Ott) that target multiple provers.

Kumar et al. [18] describe CakeML (http://cakeml.org), a
mechanically verified ML system above x86-64 machine code. The
source language definition (AST, type checking, and small- and
big-step operational semantics), compiler, and some additional ma-
chinery are written in Lem (4897 LoS); the generated HOL4 code is
used for proofs. The operational semantics of CakeML and the low-
level CakeML bytecode, and the CakeML type system are given as
inductively defined relations. The compiler is specified as a collec-
tion of recursive functions, in a typical functional programming style.
Furthermore, the semantics and type system rely heavily on helper
functions. This is in marked contrast with the OCamllight seman-
tics which was almost entirely relational. It was convenient when
doing the proofs for helper (partial) functions (e.g., environment
lookup) to be specified as functions rather than relations. Besides
relations, functions, and datatype definitions, CakeML uses the Lem
list, finite map, and string libraries. The Lem sources are in the
compiler, bytecode, semantics, and translator subdirectories
of the repository.

Ongoing work describes a model for a substantial part of the
C programming language (8274 LoS), largely in a functional style
over an inductively defined abstract syntax. This initially used only
the OCaml target but has recently been adapted to also generate Coq
(which has been used for significant proofs); the effort involved was
nontrivial but remains small (weeks vs years) in comparison to the
time required to develop the model.

http://www.cl.cam.ac.uk/~pes20/lem/
http://www.cl.cam.ac.uk/~pes20/ppcmem
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
http://cakeml.org


Models extracted from Lem to proof assistant and OCaml code
are typically of a similar size to the original specification. For
example, the C/C++11 concurrency model constitutes 2409 LoS,
whereas the OCaml, HOL4 4 and Coq extractions are 2673, 2768 and
2249 lines in length, respectively. LaTeX code generated from the
same model is roughly twice the length of the original specification.

Together, these developments demonstrate that Lem is expres-
sive enough for a range of modelling tasks, spanning processor
architectures, C and ML-like programming languages, and network
protocols, and that it compiles to usable executable code for model
exploration and usable definitions in multiple provers for proof.
Anecdotally, our experience is that it is reasonably easy to use (anal-
ogous to a functional programming language) and that Lem models
are malleable: in developing a model, one can largely focus on the
domain being modelled rather than issues of expressing the model
in Lem, and models can be easily changed as they are developed.
Our impression so far is that adding a new target to a specification
is usually easy or (at worst) like the last example above, but it is
possible that to get a truly idiomatic version in a new target one
may need to hand-rewrite substantial parts of the specification in
that target, and prove equivalence to the Lem-generated versions.
For an intricate specification, embodying much development and
validation effort, even that may be preferable to the alternative of
hand-rewriting the whole. More experience is needed to see which
is normally the case.

Lem is a general-purpose specification language but not, of
course, an all-purpose one. It does not aim to support specifica-
tions with elaborate dependently typed hierarchies of mathematical
structures. It has a straightforward syntax (again similar to that
of a functional programming language), without support for rich
user-defined syntax. The executable code Lem generates is designed
to have a clear relationship to the source and has sufficient perfor-
mance to support exploration of models on the intricate but small
examples that (e.g.) arise as concurrency test cases; it is not aimed
at producing performance-optimised code. Lem complements the
Ott tool [33]: Ott supports arbitrary context-free user-defined syntax
and inductive relations; this is a good fit for high-level programming
language and calculus semantics but the lack of the more general
types, functions and library support of Lem makes it awkward to
use for modelling the lower-level systems and languages described
above. Lem can serve as an intermediate language for other tools that
produce definitions of types, functions, or inductive relations, and
we have refactored Ott (which originally produced source code for
Coq, HOL4, and Isabelle/HOL directly) to produce Lem definitions,
leaving Lem to handle the prover-specific idiosyncrasies.

3. Design for portable specification
Aiming to support a range of specification tasks, Lem does not build
in any domain-specific assumptions on the form of specification
permitted: it is a general language of type, higher-order function,
and inductive relation definitions.

The language is intended to be as expressive and straightforward
as possible given this generality; it avoids novel or exotic features
that would give it a steep learning curve, or render translations
into the various targets infeasible. From functional programming
languages we take pure higher-order functions, general recursion,
recursive algebraic datatypes, records 〈| · |〉, lists [·], pattern match-
ing, parametric polymorphism, a simple type class mechanism for
overloading, and a simple module system. To these we add logical
constructs familiar in provers: universal and existential quantifica-
tion, sets {·} (including set comprehensions), relations, finite maps,
inductive relation definitions, and lemma statements.

The concrete syntax for types, patterns, expressions, top-level
declarations and definitions are broadly standard, as one can see
in the excerpts in Fig. 1. For types, patterns, expressions, and

definitions Lem’s grammar largely follows OCaml for the common
constructs (the main exceptions being prefix type applications,
curried constructors, and records using 〈| · |〉, to allow {·} for sets,
more sophisticated control of opening of modules via open import,
and the addition of inductive relation and type class and instances
declarations). Lem also adds a series of top-level commands, via
the declare syntax, to let the user tune how Lem definitions are
mapped into the various targets (by declaring target representations
and controlling notation, renaming, inlining, and type classes), to
generate witness types and executable functions from inductive
relations, and for assertions; we describe all these below.

Although most of Lem’s features should be unsurprising at first
sight, their detailed design must carefully manage tradeoffs between
Lem’s expressiveness and usability as specification language, and
the need to generate usable code for the various target languages and
provers. In this section, we first describe the basic architecture of the
Lem implementation, and then describe the design issues and our
solutions for each of these seemingly simple features – including
polymorphism, equality, partiality, sets, and inductive relations. In
the next section (§4), we will describe Lem’s library definition
mechanism, and explain how it connects the Lem standard library
to the widely varying standard libraries of the targets.

3.1 System architecture
Lem is written in OCaml, and it follows the architecture of a tradi-
tional compiler invoked from the command line, with conventional
lexing and parsing of source files into an untyped AST, followed
by type inference (in the style of Milner’s Algorithm W) into a
typed AST. The OCaml type declarations for the untyped AST are
automatically extracted from the formal definition of Lem’s syntax
by Ott [33], to help keep the Lem implementation and formal spec-
ification in agreement. Its parser and lexer are implemented using
ocamlyacc and ocamllex.

To produce output for a particular target, the typed AST is then
transformed, compiling away features that the target does not sup-
port (transforming away type classes via dictionary passing, compil-
ing away unsupported pattern matching forms, etc.). Special idiosyn-
crasies of the target may require additional clean-up (e.g., variable
name clashes, extra required parentheses, different infix operator
syntax); then the resulting AST is printed in the target’s source
syntax. The individual transformations are reused in different combi-
nations for the different targets, as required, and the implementation
checks that they preserve typing, greatly easing debugging of Lem
itself.

Lem has about 29 000 lines of OCaml code. This compactness
makes it easy to understand and adapt. The library is extensive
in comparison to the code size: there are about 7700 lines of
Lem libraries, together with 1800 lines of OCaml, 1200 lines of
Isabelle/HOL, 500 lines of Coq and 300 lines of HOL4.

3.2 Whitespace preservation and refactoring support
Unlike a compiler or proof assistant, Lem’s front end preserves all of
the comments, whitespace, and line breaks in the source files. Lem
attempts to format its output using the formatting of the input, rather
than a pretty printing algorithm, in order to give the user fine-grained
control of the output layout. Of course, this is not always possible
when the input had to undergo significant transformation, such
as the pattern match compilation or dictionary passing translation
discussed below. In these cases, we use a standard pretty-printing
algorithm for the affected expressions, but can at least keep all
of the comments from the input. Crucially, the LaTeX backend
does not perform such transformations, and so the user has control
over the typesetting of their specifications, including linebreaks and
indentation.



Types

typ ::= _ | α | typ1 → typ2 | typ1 × .... × typn | id typ1 .. typn | backtick_string typ1 .. typn | (typ)

Patterns

pat ::= _ | (pat as x ) | (pat : typ) | id pat1 .. patn | 〈|fpat1; ... ; fpatn ;?|〉 | (pat1, .... , patn) | [pat1; .. ; patn ;?] | (pat) | pat1 :: pat2
| x + num | lit

Expressions

lit ::= true | false | num | hex | bin | string | ()
exp ::= id | backtick_string | fun psexp | function |? pexp1| ... |pexpn end | exp1 exp2 | exp1 ix exp2 | 〈|fexps|〉 | 〈|exp with fexps|〉
| exp.id | match exp with |? pexp1| ... |pexpn end | (exp : typ) | let letbind in exp | (exp1, .... , expn) | [exp1; .. ; expn ;?] | (exp)
| begin exp end | if exp1 then exp2 else exp3 | exp1 :: exp2 | lit | {exp1|exp2} | {exp1| forall qbind1 .. qbindn |exp2}
| {exp1; .. ; expn ;?} | q qbind1 ... qbindn .exp | [exp1| forall qbind1 .. qbindn |exp2] | do id pat1 ← exp1; .. patn ← expn ; in exp end

psexp ::= pat1 ... patn → exp

qbind ::= x | (pat IN exp) | (pat MEM exp)

q ::= forall | exists

Declarations

target ::= hol | isabelle | ocaml | coq | tex | html | lem
lemma_decl ::= lemma x : exp

component ::= module | function | type | field
target_rep_rhs ::= infixfixity_decl backtick_string | exp | typ |
target_rep_lhs ::= target_rep component id x1 .. xn | target_rep component id tnvars

declare_def ::=
| declare compile_message id = string
| declare rename module = x target_modules_opt
| declare rename component id = x
| declare ascii_rep component id = backtick_string
| declare target target_rep target_rep_lhs = target_rep_rhs
| declare set_flag x1 = x2
| declare termination_argument id = termination_setting
| declare pattern_match exhaustivity_setting id tnvars = [id1; ... ; idn ;?]elim_opt

Definitions

val_def ::= let letbind | let rec funcl1 and ... and funcln | let inline letbind

def ::=
| module x = struct defs end (* module definition*)
| module x = id (* module alias *)
| open_import id1 ... idn | open_import backtick_string1 ... backtick_stringn (* import and/or open of modules *)
| class_decl(x tnvar) val x1 ascii_opt1 : typ1 1 ... val xn ascii_optn : typn n end (* typeclass definitions *)
| instance_decl instschm val_def1 1 ... val_defn n end (* typeclass instantiations *)
| type td1 and ... and tdn (* type definition *)
| val x ascii_opt : typschm (* value type constraint *)
| val_def (* value definition *)
| indreln indreln_name1 and ... and indreln_namei rule1 and ... and rulen (* inductively defined relations *)
| lemma x : exp (* lemma statement *)
| declare_def (* target-behaviour declaration *)

Lem source files

defs ::= def1 ;;
?
1 .. defn ;;?n

Figure 1. Lem Syntax Excerpts



Since Lem preserves comments, whitespace and linebreaks, it
can reproduce its input exactly. This means that Lem can also be
used as a refactoring tool for its own input. A special refactoring
backend is able to rename functions and types, remove or add
function arguments, move definitions to different modules and much
more. For example, including

declare {lem} target_rep function f = ‘g‘

in a source file and then running the file through Lem will produce
a new source file with all occurrences of the function f renamed to
g. Via a similar mechanism, one may add or remove parameters to
functions, rename types, fields, and so on, or inline function calls
with their definition.

Whitespace preservation also means that a standard OCaml
profiling tool can be used for coverage analysis of a specification,
identifying the parts of a Lem specification that are exercised by
a particular set of tests run in a semantics exploration tool (with
kernel generated from the specification): the generated OCaml is
close enough to the Lem source that one can usually easily relate
one to the other.

3.3 Polymorphism and dependency
Parametric polymorphism is essential in our specifications – most
obviously, for the library functions over lists, sets, and suchlike, and
for functions over user-defined polymorphic inductive types. But, as
is well-known in the higher-order-logic context, let-polymorphism
(the implicit generalisation of types to type-schemes in nested let
bindings) makes higher-order logic unsound (see Section 5 of [8]).
Accordingly, Lem supports top-level parametric polymorphism, but
type generalisation is restricted to (module) top-level definitions, as
in HOL4 and Isabelle/HOL, but diverging from the Hindley-Milner-
style polymorphism found in ML-like programming languages. We
have not found this to be limiting in practice, and Vytiniotis et
al. [37, §4.3] provide empirical evidence that let-polymorphism is
rarely used in practical Haskell programming.

More sophisticated type-language features, such as System
F-style polymorphism, dependent types, and subtyping, are also
not included in Lem, because these would be unduly difficult or
impossible to support in many of our chosen targets. However, we
do support ad hoc polymorphism with type classes.

3.4 Equality and type classes
There are substantial differences in the treatment of equality in our
different targets. In the two implementations of higher-order logic,
Isabelle/HOL and HOL4, there is a ‘pervasive’ equality constant =,
at type α→ α→ bool. OCaml features a similarly typed equality
constant, but it is only usable for non-function types (raising an
exception otherwise). Further, this OCaml polymorphic equality
is structural, and does not take into account equivalence relations
between data types. For abstract types such as sets (implemented in
the Lem translation to OCaml as ordered balanced binary trees) one
needs to use an equality function specific to sets that compares sets
based on their elements, rather than their low-level representation
in memory, and that function must have access to the order relation
used to build the trees. We could introduce specific equalities at
each type, for example setEq at type ∀α. (α → α → bool) →
set α → set α → bool. However, this would force the user to
supply the equality function on elements of the set by hand (a task
that should be automated), and break the uniformity of the treatment
of equality within the language. Lem includes type classes to solve
both of these problems.

The Lem Eq type class has the following form:

class (Eq α)
val (=) [‘isEqual‘] : α→ α→ bool
val (<>) [‘isInequal‘] : α→ α→ bool

end

This type class introduces two methods, equality =, and inequality
<> (together with alphanumeric alternative names). The type class
may be instantiated at any type by providing implementations for
the equality and inequality methods at that type. For OCaml, Coq,
Isabelle/HOL and HOL4, the Lem translation introduces explicit
dictionary passing to handle the general case of type classes and
their constraints. But there are three situations in which introducing
dictionary passing would lead to non-idiomatic code and obstruct
use of the extensive proof automation facilities of the provers.

First, for the backends with a general polymorphic boolean equal-
ity, Isabelle/HOL and HOL4, we wish to map the Lem overloaded
equality constant to that native equality constant. We achieve this
with a general inlining method:

let inline {hol;isabelle} (=) =
unsafe_structural_equality

This inlining effectively ‘turns off’ the equality type class for HOL4
and Isabelle/HOL. Since all methods are implemented without
using the type-class mechanism, the class (and the associated
dictionary passing) is not generated for these backends. Here
unsafe_structural_equality, intended to be used by library
authors only, is mapped to the native equality constants in the
Isabelle/HOL and HOL4 backends. It is also mapped to the pervasive
(but restricted as above, hence the ‘unsafe’) equality function in the
OCaml backend.

Secondly, sometimes we want to use a method only for certain
backends. With the normal Lem standard library, Lem sets are
represented in Coq and OCaml as ordered, balanced binary trees
and therefore an order on their elements needs to be provided. This
is achieved via a Lem type class SetType. However, the HOL4
and Isabelle/HOL sets do not require an order, so using the type
class mechanism naïvely would lead to non-idiomatic HOL4 and
Isabelle/HOL code by generating unnecessary dictionary arguments.
By restricting class-methods to certain backends, this problem can
be solved:

class ( SetType α )
val {ocaml;coq} setElemCompare: α→ α→ ordering

end

Lem’s type-checker ensures that the method setElemCompare is
only used in the Coq and OCaml backends, with the type class being
safely eliminated for all other backends.

Thirdly, we wish to avoid introducing dictionary passing where
all occurrences of a type class can be statically resolved, for example
for the Lem type-class Numeral, used for overloading numeral
syntax for multiple number types. This type class is declared as
inline. All occurrences must be resolved, and all methods of an
inlined type-class are replaced (inlined) with their instantiations.

Using type classes for equality in Lem also works around
another issue in the Coq backend. In Coq the types bool and Prop
(technically a sort) are distinct, with ‘propositional equality’ having
type ∀α. α→ α→ Prop. It is generally impossible in Coq, without
additional axioms, to produce an equality constant of type ∀α. α→
α→ bool. Rather, ‘boolean equalities’ are given at specific types,
such as nateq of type N → N → bool and booleq of type
bool → bool → bool, and so on. Lem, following Isabelle/HOL
and HOL4, identifies boolean-typed expressions and propositions,
or formulae. This poses a problem with extraction to Coq, as
innocuous Lem code—e.g. if 4 = 5 then true else false—
becomes problematic if we try to extract an equality constant in
Lem to Coq’s propositional equality constant, as case analysis over
Prop is not permitted. Boolean equality is therefore needed, and
type classes are used to handle this uniformly. We return to bool
and Prop in §3.13.



In principle, it should be straightforward for Lem to automat-
ically generate the appropriate instance declarations for its basic
library type classes (Eq, Ord, SetType, and MapKeyType) for most
user-defined types, analogous to Haskell’s deriving mechanism.
Unfortunately that is not currently implemented, and a default in-
stantiation mechanism is used instead, where a type class instance,
usually supplied in the Lem library, may be marked as the ‘default’
instance to select if no over-riding instance is provided by the user.
This means the user must take care to give non-default instantia-
tions (with the correct equality or comparison function) in some
places, e.g., for the OCaml backend, for types which both contain
an abstract type and are used as set elements.

Compared to Haskell’s type class system, Lem’s is intentionally
less expressive: our goal is to support simple overloaded operators
and to solve the above-mentioned issues dealing with the subtle
differences between our target systems, not to enable generic
and polytypic programming. In particular, Lem does not support
constructor classes (type classes with type variables at a higher
kind than *), default implementations of methods, or backchaining
search for instances, nor does it support more recent extensions:
multi-parameter type classes, functional dependencies, and so on.

Our implementation already has much of the underlying infras-
tructure needed for some extensions: instances at compound types,
multi-parameter classes, default methods, and other features that
would make type classes more convenient to use, and these should
be easy to implement in the future. However, constructor classes and
the like pose more significant technical challenges, because their
dictionary-passing translations are not naturally typeable in the sys-
tems of ML-style polymorphism of our OCaml and HOL4 targets
and Lem itself. One possible design choice would be to support
them, but only at statically known types (i.e., where dictionaries are
not required).

3.5 Module system and ‘do’ notation
Lem has a simple module system designed to support the organi-
sation of large-scale specifications into multiple files, and to allow
the reuse of specification libraries (including Lem’s standard library
itself) across developments. It does not include the programming-in-
the-large features of advanced PL module/component systems, such
as enforced abstraction or parameterisation, because those are pri-
marily useful in code bases that are orders of magnitude larger than
even large specifications. Our larger developments each comprise
between 10 and 40 non-library Lem files.

The module system is based on a restricted subset of OCaml’s
module system: modules contain sequences of definitions, and mod-
ules can be defined at the top level (but not inside of expressions).
Definitions inside of a module are accessed from outside either
through the open declaration, or by explicitly spelling out the mod-
ule path (with dot notation). There are no signatures or functors.

Lem supports a Haskell-like do notation for specifications that
involve monads. Unlike Haskell, Lem’s type class system is not
powerful enough to infer which monad is being used (since a monad
is a type constructor rather than a type). Instead, each do expression
is annotated with a module name that defines the relevant bind and
return operations.

3.6 Pattern matching
The usefulness of pattern matching is well-established in functional
programming languages, and it is even more valuable in a specifica-
tion language like Lem because it supports high level, abstract and
clear code. But the support for pattern matching varies significantly
between the different backends we target. For example, record pat-
terns are supported by OCaml and (recently) Coq, but not by HOL4
or Isabelle/HOL; as-patterns are supported by OCaml and Coq, but
not by Isabelle/HOL or HOL4; and idiomatic HOL4, Isabelle/HOL

and Coq code uses pattern matching on natural numbers (using zero
and the successor function as constructors), whereas this is not sup-
ported by OCaml. Besides differences in explicit pattern match
expressions, there are also differences in how one can use patterns
elsewhere. Anonymous functions in OCaml allow arbitrary patterns
as arguments, but in HOL4, Isabelle/HOL and Coq only tuples of
variables are allowed. The situation is similar for let-expressions
and patterns occurring in restricted quantifications. Beyond these
local syntactic properties, there are also important semantic differ-
ences: Isabelle/HOL supports non-exhaustive pattern matches, but
no redundant rows; Coq requires pattern matches to be exhaustive
and prohibits redundant rows; OCaml allows both redundant and
non-exhaustive pattern matches; and HOL4 allows non-exhaustive
pattern matches but redundant rows only at certain places.

We take the opportunity in the Lem language design to provide
more general pattern matching, combining the facilities of each tar-
get, and compile those general patterns away where necessary. This
compilation mostly follows a simple, standard approach, essentially
switching on the outermost constructor symbols ([2]) in order to
compile pattern matches to decision trees, implemented efficiently
following ideas from [22]. But in contrast to the normal PL situation,
where one wants to compile away pattern matching altogether, for
Lem to produce idiomatic and human-readable code, we have to
preserve as much of the original structure as possible; Lem needs
sophisticated models of the capabilities of each backend in order to
compile only the unsupported features and preserve as much of the
original structure as possible.

For example, consider the following Lem record pattern match:

type t = 〈| f1: nat; f2: bool |〉

let test_fun x = match x with
| Nothing ⇒ 0
| Just 〈| f2 = true |〉 ⇒ 1
| Just 〈| f1 = 0 |〉 ⇒ (1 : nat)
| Just 〈| f1 = x |〉 ⇒ x + 2

end

OCaml supports all these pattern forms, so the resulting OCaml code
looks very similar to the input; pattern compilation is not needed.
In contrast, HOL4 does not support record patterns, and compiling
them away – while preserving as much of the structure as possible –
leads to the following HOL4 result:

val _ = Define ‘test_fun x = case x of
NONE ⇒ 0

| SOME t ⇒ (case (t.f2, t.f1) of
(T,_) ⇒ 1

| (_,0) ⇒ (1 : num)
| (_,_) ⇒ let x = t.f1 in x + 2)‘;

Our implementation also supports a mechanism similar to view
patterns [38]. This feature allows users to write more abstract,
higher-level specifications. For example, consider the type of sets.
Functional programmers might be tempted to use the choose
function to get the unique element out of a set known by the
programmer to be a singleton. However, choose requires the axiom
of choice in Coq, and its result is undefined for empty sets and
underspecified for sets with more than one element. A solution is
using a case-split for sets:

let set_case s c_empty c_sing c_else =
if (null s) then c_empty else
if (size s = 1) then c_sing (choose s) else
c_else

This set_case can be implemented in all backends and is even
executable. Lem’s view-pattern feature allows setting it up together
with empty and singleton for pattern matching.



declare pattern_match inexhaustive
set ’a = [ empty; singleton ] set_case

This setup provides easily readable syntax, as below:

let set_test s : nat =
match (s : set nat) with
| empty ⇒ 0
| singleton (x + 3) ⇒ 2
| singleton _ ⇒ 1
| _ ⇒ 3

end

3.7 Partial pattern matches
Programming languages typically permit non-exhaustive or partial
pattern matches, with a dynamic exception or error if a match fails
at runtime. This supports two use cases: (a) where the programmer
knows that the match will never actually fail, because of some
invariant (e.g. that a list is nonempty) that may not be expressible in
the language’s type system, and (b) where the intended control flow
includes paths where an exception is raised and handled.

Proof assistants are more restrictive to retain soundness. For (a),
in the HOL4 and Isabelle/HOL logics the Hilbert choice operator
lets one construct an arbitrary unknown default value at any type, but
in Coq all matches must be total (though the Coq type system can
capture complex invariants). None of the three support (b) directly,
as that would require a deeply embedded exception monad.

Lem permits partial matches, to support (a), and the Lem
library also exports a failwith constant which is intended to
signal ‘catastrophic’ failure with some user-supplied error message
which may be used at any type. For OCaml partial matches are
mapped directly onto similarly partial matches (any Match_failure
exceptions can be handled by wrappers around the Lem-generated
code, but not within that code). Lem can be configured with a
flag at compile time to eliminate match branches that contain only
failwith in favour of a partial match. For HOL4 and Isabelle/HOL
partial matches are mapped to syntactically partial matches that
ultimately use the Hilbert choice operator, which is appropriate in
cases where the match can never fail. For Coq, the story is more
complex. Given a partial match at a concrete type, e.g.

match (m: maybe bool) with
| Just j ⇒ j

end

that lacks a case for the Nothing constructor of the maybe type and
whose result type is the concrete bool, we generate the following:

match (m: maybe bool) with
| Just j ⇒ j
| _ ⇒ bool_default

Here bool_default is a default value. Default values for base types
are provided in an external harness file and Lem automatically
generates default values for all user-defined types during generation
of Coq code. Again this is suitable in cases where the user knows
that the result of that branch is irrelevant.

Partial matches with a polymorphic result type are more prob-
lematic (though in practice we have not found many cases where
they arise), e.g.

match (m: maybe β) with
| Just j ⇒ j

end

We could use a type class with a default-value method, at the cost
of introducing dictionary passing for that into the generated Coq
for any definition which hereditarily involves a partial polymorphic
match. Instead, on the assumption that the user would usually prefer
to adapt their specification to avoid this, at present we translate into
a complete Coq match

match (m: maybe β) with
| Just j ⇒ j
| _ ⇒ DAEMON (* From <position>. *)

end

that introduces a placeholder marking a point in the source specifi-
cation that needs to be addressed, and a warning or error is issued.
Here, DAEMON is a constant of type ∀α.α—the type of logical falsity.
This lets one build the remaining development but its presence as an
axiom makes Coq’s logic inconsistent, so one would aim to remove
all such usages.

Lem itself has no operational semantics, its meaning being
defined by the translations to the various targets. It is pure in the
sense that it has no I/O or store effects, but in general the use
of partial pattern matches and their compilation using exceptions
in the OCaml backend can make the OCaml evaluation order
observable in generated OCaml code (and there is a similar issue for
nontermination). However, if partial matches are only used for (a)
above, with missing cases only in places that are unreachable under
any evaluation order (and if one uses only Lem functions that are
robustly terminating in the same sense), then the target evaluation
order should be irrelevant.

3.8 General recursion vs total functions
Functional languages typically allow general recursion, whereas
proof assistants generally require some kind of termination proof
for all recursive functions in order to maintain the soundness of their
logic. For example, the function let rec f x = not (f x) will
diverge in OCaml when called, but would introduce an unsoundness
to a proof assistant. Defining a recursive function in Coq, HOL4 or
Isabelle/HOL therefore requires the user, often assisted by the proof
assistant itself but in quite different ways, to supply evidence that the
function terminates on all inputs. Lem permits general recursion but
with hooks to invoke the backend’s various automatic termination
provers, where they exist, e.g.:

declare termination_argument my_rec_function = automatic

If that does not suffice, for the HOL4 and Isabelle/HOL backends
Lem can defer termination proofs, letting the user provide them
manually later (see §3.11).

Currently, the Coq backend extracts recursive functions to a
Fixpoint definition using Sozeau’s Program facility [34]. In prac-
tice, we have only encountered one recursive function that Coq’s
automated proof tools failed to establish as terminating and had
to be rewritten by hand within Lem. However, as with HOL4 and
Isabelle/HOL, Program allows the user to defer termination proofs,
and therefore a strategy of defering such proofs to the user to be
filled in manually later could also be adopted for the Coq backend.

Both facilities are used in CakeML, where simple functions
(e.g., stackshift in compiler/toBytecode.lem) declare an auto-
matic termination argument. More complex ones that HOL cannot
automatically prove termination for (e.g., the mutually recursive
exp_to_Cexp of the same file) are proved in a separate HOL file
(e.g. compiler/compilerTerminationScript.sml).

3.9 Per-target representation differences
One might imagine that a portable specification should necessarily
map onto mathematically equivalent definitions in the different
targets, but this turns out not to be the case: there is a tension
between it and the need to generate idiomatic code.

For example, in OCaml the standard type for numbers is int,
31- or 63-bit signed integers, while our proof assistant targets use
unbounded natural numbers as their standard type. In each target
common functions like the list length function use that target’s
local standard number type, so either Lem has to add wrappers to



such functions or map the same Lem type to different mathematical
constructs in different targets.

We give the user the choice, providing a Lem type nat which
is translated to the standard number type of the targets (for use
where the user knows the differences are irrelevant, e.g. when using
numbers just as unique identifiers) and a Lem type natural which
always maps to unbounded naturals. Similarly we provide int and
integer. We provide conversion functions between the different
number types; polymorphic numeral constants and polymorphic
arithmetic functions make switching between number types easy.

The choice of set representations is more involved. Since Lem is
geared towards executability, one might want to model only finite
sets, and in practice users are often only concerned with finite struc-
tures, e.g. as arising in finite executions of the models described
in §2. On the other hand, potentially infinite sets are very common
and very useful for specifications and more convenient to work
with in some provers. Similar questions occur with quantification.
Only bounded quantification is easily executable, but unbounded
quantification is often useful for specifications. Lem permits un-
bounded quantification and infinite sets, but only for the HOL4 and
Isabelle/HOL targets; for OCaml and Coq the library currently only
provides finite sets and bounded quantification. In future we will
provide alternatives as for nat and natural above.

Having decided on finite or infinite sets, there remains a non-
trivial choice of the best target representation. OCaml has a set
implementation in its standard library, but with a functorised in-
terface to supply an order on elements; we use a library with a
polymorphic interface instead. For Isabelle/HOL and HOL4 the
idiomatic potentially infinite sets are used. Isabelle/HOL also has
several interesting alternative ones with improved executability, but
they are supplied with an order via Isabelle/HOL’s type-class mech-
anism which would require the user to supply potentially nontrivial
proof. For Coq, there is no single idiomatic set library: FSets pro-
vides a module-oriented implementation, the Collections wrapper
around this library uses type classes, and one can also represent sets
as functions into bool or Prop (‘ensembles’). They all also require
an order, or at least a decidable equality relation, which would have
to be provided via Coq’s type-class mechanism. We add a simple
finite-set library, leaving additional Lem libraries to map Lem sets
to other Coq representations as future work.

Associative maps have similar issues to sets. Lem translates maps
to Lem-specific finite map implementations in OCaml and Coq and
into the idiomatic map types for HOL4 and Isabelle/HOL, which
are finite maps and infinite maps respectively.

The binary relation type is closely related to sets and therefore
also has similar design issues: relations can be seen as sets of pairs
or as binary predicates. Both Isabelle/HOL and HOL4 provide
dedicated libraries for both representations, and Lem currently maps
only to the set representations.

3.10 Naming, notation and namespace issues
The namespaces and the sets of pre-defined identifiers and reserved
keywords differ in each backend. For example, op is a reserved word
in Isabelle/HOL but not in Coq. Without reserving every reserved
word and every pre-defined identifier in each of our backends in
Lem, we must implement a renaming mechanism to avoid name
clashes post extraction.

Lem has a simple model of the namespaces and a list of the
reserved words of each target. If a reserved word for the backend in
question is encountered, Lem will automatically rename the constant
and issue a warning. For example,

let op f g = ...

is automatically renamed to op0, or some other globally fresh name,
when extracting to Isabelle/HOL. All occurrences of this constant

are also suitably renamed. A warning is issued on the command line
to notify users of the renaming. The user can also manually control
renaming. For instance, placing

declare {isa} rename function op = isaop

in a Lem source file will rename op to isaop during extraction to
Isabelle/HOL.

Note that Lem provides fine-grained control over how various
syntactic components are renamed. The command above instructs
Lem to rename only the function op, leaving the names of any
shadowing record fields, modules or types fixed. Replacing the
function keyword in the command above with type or field, for
example, would allow the user to rename those components instead.
This mechanism allows us to avoid auto-generated names, making
Lem generate stable, predictable output even in the presence of name
clashes, whilst also allowing the renaming of constants to follow the
conventions of a particular backend, facilitating the generation of
idiomatic backend code.

The Lem renaming mechanism respects target-specific differ-
ences in scoping. For example,

let op op = ...

features a function op taking a parameter called op. For some
backends, this is problematic, and so the two should be renamed
apart there, but not otherwise. In our running example, the function
op will be renamed to isaop and the argument op to op0 to avoid
clashes with the Isabelle/HOL keyword. Lem correctly renames
the name of the parameter apart from all constants present in the
context.

3.11 Assertions, lemmata, and auxiliary outputs
Lem is intended to translate into target output that can be directly
used, without manual editing by the user: Lem definitions generate
target definitions which can be fully automatically checked. How-
ever, Lem can also generate aids for the user in additional auxiliary
files, intended to be copied and manually edited by the user as neces-
sary. For example, when defining a complicated recursive function
in Lem, HOL4 and Isabelle/HOL can leave the termination proof
to the user. Lem generates in the auxiliary file a template for its
termination proof which the user can flesh out.

Lem also supports assertions, lemmas and theorems. Asser-
tions are executable, for automated testing of simple properties.
For OCaml they generate code in an auxiliary file that runs auto-
mated unit tests. For the theorem prover backends, they generate
proof obligations, which are attempted to be discharged automat-
ically. Lemmas and theorems are non-executable; they add proof
obligations to auxiliary files. Simple, low-level lemmas can also be
used for testing: often the resulting proof obligations can be auto-
matically discharged. Exporting complicated lemmas and theorems
might be beneficial as well. For example, Isabelle/HOL provides
highly automated, powerful tools, and by exporting a lemma to
Isabelle/HOL, this powerful machinery is easily accessible even by
users not familiar with Isabelle. The following Lem lemma:

lemma unzip_zip:
∀l1 l2. unzip (zip l1 l2) = (l1, l2)

is translated to the Isabelle/HOL code:

lemma unzip_zip:
"∀l1 l2. list_unzip (zip l1 l2) = (l1, l2)"

(* try *) by auto

The automated proof attempt by the auto method fails. If the user
then uncomments try, various automated methods are run to either
prove the lemma or find a counterexample. These methods include
running external SMT and first order provers, internal natural



deduction tools, and a sophisticated counterexample generator. In
this example, Isabelle/HOL quickly finds a counterexample:

Nitpick found a counterexample for card ’a = 2 and card ’b = 2:
Skolem constants: l1 = [a1], l2 = []

In general, tools like the counterexample generator Nitpick
work well with Lem-generated Isabelle/HOL code, because Lem
is tailored toward executability and this executability is (as far as
possible) preserved by the translation to Isabelle/HOL. Therefore,
non-trivial counterexamples can often be found automatically.

3.12 Inductive relations
Specifications often involve inductively defined relations, such as
type systems or evaluation relations defined as the smallest relations
satisfying a collection of rules. Lem provides an inductive relations
mechanism for this purpose.

The following Lem definition (generated by Ott from a similar
definition expressed over a calculus syntax) captures the reduction
relation of the call-by-value λ-calculus:

indreln [reduce: term → term → bool]
ax_app: ∀ x t1 v2.
(is_val_of_term v2) =⇒
reduce (T_app (T_lam x t1) v2) (subst v2 x t1)

and
ctx_app_fun: ∀ t1 t t1’.
(reduce t1 t1’) =⇒
reduce (T_app t1 t) (T_app t1’ t)

and
ctx_app_arg: ∀ v t1 t1’.
(is_val_of_term v) ∧ (reduce t1 t1’) =⇒
reduce (T_app v t1) (T_app v t1’)

Here, reduce is introduced as a relation—Lem relations are essen-
tially functions into bool—between AST terms. In this case, the
reduce relation is defined via three clauses. Within a clause, the
full power of the Lem language is available, rather than a purely
relational subset, as in Prolog. For instance, is_val_of_term and
subst are functions, rather than relations. One may also define
mutually recursive inductive relations.

The Isabelle/HOL, HOL4 and Coq backends support inductive
relations, and we map Lem inductive relations into the native
inductive relations of these backends.

However, inductive relations are not naturally expressible in our
OCaml backend. We therefore implement a compilation process,
compiling a Lem inductive relation into a function that searches for
derivations. The compilation process is given a mode by the user, a
description of which components of the relation are to be treated as
‘inputs’ and which are to be treated as ‘outputs’. This compilation
scheme is similar to one implemented within the Isabelle/HOL proof
assistant, as implemented by Berghofer et al. [5] (there verified
within Isabelle/HOL).

We go further than the Isabelle/HOL compilation scheme in
automatically generating witness types, which encode a derivation
tree for a given inductive relation. The functions generated by the
compilation scheme can return witnesses, and additional functions
check whether an element of the witness type belongs to the
relation. These witnesses may also be produced externally, e.g. by a
typechecker implementation that one wants to test, using the Lem-
generated checker functions, against its definition. The generated
types and functions are themselves defined in Lem and added to
the Lem typing context, and therefore can be used by later Lem
definitions and translated to any of the Lem targets.

For example, the following syntax instructs Lem to generate a
reduction function for reduce, naming it onestep:

[reduce: term → term → bool
onestep: input → output ]

The mode annotation on onestep instructs the compilation machin-
ery to consider the first component of reduce as an input, and the
second an output. Additional annotations can indicate that the func-
tion returns multiple results, that there must be a unique return value,
or to generate a witness for the relation. Generated functions that
are partial are treated in the same way as partial pattern matches.
For non-deterministic rules, the generation searches exhaustively
and, according to the annotation, either returns a list of elements in
the relation or a single one (or is undefined).

To generate witness types and witness-checking functions, one
can write:

[reduce : term → term → bool
witness type r_witness; check check_r;]

This generates a witness type for the reduce relation:

type r_witness =
| Ctx_app_arg_witness of term × term × term × r_witness
| Ctx_app_fun_witness of term × term × term × r_witness
| Ax_app_witness of string × term × term

Instrumenting an interpreter or type-checker to produce such wit-
nesses should be straightforward. Doing that, and also scaling this
code generation up to make it work well on practical examples, is in
progress.

3.13 Prop and bool in the Coq backend
As mentioned in our discussion of equality and type classes in Lem,
Coq maintains a distinction between a sort of propositions, Prop,
and a type of boolean-valued expressions, bool. Lem, similarly to
Isabelle/HOL and HOL4, collapses these two notions into a single
type, bool. This mismatch between the languages causes difficulties,
most notably in how we handle equality, as we have seen, but also
in how we handle inductive relations and lemmata.

Take, as an example, the following Lem inductive relation1:

indreln [even: nat → bool]
even_zero: true =⇒ even 0

and even_plus: ∀n. even n =⇒ even (n + 2)

This is translated to an ordinary Coq inductive type residing in Prop
(as all inductive types in Coq must reside in a sort):

Inductive even: nat → Prop :=
| even_zero: true → even 0
| even_plus: ∀n, even n → even (n + 2).

Here the premises of the introduction rules of the inductive relation
(for example, true in even_zero) are of boolean type, whereas
they need to inhabit Prop. We use a Coq coercion from the Coq
bool type into Prop to circumvent this problem: a function of
type bool → Prop declared as a coercion automatically lifts a
boolean expression into Prop. A similar problem occurs with lemma
statements, which reside in bool in Lem but must reside in Prop in
Coq.

However, problems persist elsewhere. Case analysis in Prop is
restricted in Coq, and one may only perform case analysis on a
term of type Prop if the resulting type of the term obtained from the
analysis is also of type Prop. However, Lem allows one to perform
case analyses with if- and case-expressions on expressions which
reside in Prop in the generated code. For example, Lem allows users
to perform a case analysis on inductive relations:

let odd n = if even n then false else true

1 Here, the true premise in even_zero is unnecessary from a purely logical
viewpoint but Lem’s parser currently requires every clause in an inductive
relation definition to have a premise.



In the generated Coq code, the term even n has type Prop when it is
expected to have type bool due to its position in the if-expression.
There are four possibilities here:

1. Make this an error in Lem. However for backends like Is-
abelle/HOL and HOL4 the definition above is completely in-
nocuous and rejecting it would be too restrictive.

2. Make use of Coq’s generalised if-then-else notation (support-
ing any inductive type with exactly two constructors), include the
sumbool type usually used to capture decidability, and attempt
to automatically show decidability for inductive types such as
even above. The above would then be translated to:

let odd n = if even_dec n then false else true

where even_dec is a decidability theorem of type ∀n. {even n}+
{¬ even n}. However, this approach becomes much more
involved if we use inductive relations in more complex ways
within Lem, for example, in a list of booleans: [4 < 5, even
4, false], or in some other complex expression, and it is not
clear how well it will scale.

3. Enrich Lem’s type system to identify a computational sublan-
guage, at the cost of significant complication.

4. Admit classical axioms—known to be consistent with Coq’s
logic—and collapse Prop into bool.

We ultimately adopt the last alternative, with a function
bool_of_Prop of type Prop → bool, wrapping this function
around any propositional term that is being used in a way where a
boolean-typed term is expected. The admission of classical axioms
to collapse Prop into bool is a matter of taste. Some large Coq devel-
opments happily assume classical axioms, others stay firmly within
the existing constructive logic provided by Coq. We feel, however,
that not restricting the Lem source language to accommodate every
nuance exhibited by the backends is worth the admission of these ax-
ioms, though to what extent they affect the computational behaviour
and automation and proof search tactics of Coq will require further
experimentation to fully resolve.

4. Library mechanisms and design

Library design The Lem distribution supplies a default set of
types and functions in its library, focussed on specification. Collec-
tions such as lists, sets and maps, basic data types such as disjoint
sums, optional types, booleans and tuples, useful combinators on
functions, and a library for working with relations are all included.

Specific function names and types exposed to the Lem user by the
library are adopted from the Haskell standard library where possible.
This is a well-designed library with a focus on purity. We also wish to
provide flexibility in the specific choice of backend libraries function
names and types in the Lem library are mapped to. Often, picking
one library over another involves a trade-off between competing
factors, with no clear winner. We therefore made it possible for users
to change and extend the library as they see fit, including replacing
it wholesale. Lem library files are standard source files, their only
distinguishing feature being their inclusion in the Lem distribution.
No ‘prelude’ or ‘pervasive’ environment is automatically loaded
during Lem compilation.

Lem aims to accommodate both programming languages and
proof assistants as backends. Further, we aim to support users
who wish to target a subset of these backends, or all of them,
favouring neither one nor the other. As a result, the Lem library
must be suitably flexible in its design. Our design philosophy in
the library is permit partiality and under-specification, but isolate
them. We bifurcate the library into two sets of modules: the ‘main’
and ‘extra’ modules. The main hierarchy of files contain total,

terminating functions that we believe are well-specified enough
to be portable across all backends. Totality of pattern matching is
guaranteed by Lem, which can be configured to produce a compile
error upon encountering an incomplete pattern match, whereas
termination is established by inspection, and running the generated
library code through the proof assistant backends, which implement
their own termination checking. All other functions are placed
in the extra modules. For example, the library file function.lem
includes various useful combinators such as flip and const. The
function_extra.lem file, on the other hand, contains the constant
THE with type ∀α. (α→ bool)→ maybe α, inexpressible in Coq.
This design means there is always a conscious decision made on
the part of the user to import functionality that assumes choice or
exhibits partiality into their development.

Technical mechanisms Proof assistants provide a large body
of facts about data types such as lists and numbers. Often, these
facts are bundled together into simplification procedures for use
in proof automation. In line with our goal of producing idiomatic
backend code, we would like to map data types and functions in
our Lem source to their corresponding implementations in the proof
assistant, rather than generate our own copies, so that those facts
and simplification procedures can be used. To this end, Lem features
an array of tools for binding Lem functions and types to existing
functions and types in the backends. For example

declare ocaml target_rep type set = ‘Pset.set‘

declares that Lem sets should be represented in OCaml by the
existing OCaml-type PSet.set. Similarly, constants and functions
can also be mapped to existing target representations:

val snoc : ∀α. α→ list α→ list α
let snoc e l = l ⊕ [e]
declare hol target_rep function snoc = ‘SNOC‘
let inline {isabelle;coq} snoc e l = l ⊕ [e]

Here, we introduce a Lem constant snoc and provide a Lem
definition for it. For the HOL4 backend, snoc is mapped to the
SNOC function from the HOL4 list-library. Coq and Isabelle/HOL
do not provide their own native constants and this operation is
expressed idiomatically using list concatenation. Lem’s inlining
mechanism replaces all occurrences of the snoc constant with the
append of a singleton list in the generated Isabelle/HOL and Coq
code. Finally, for all other backends that Lem supports (i.e. OCaml in
the example), a default implementation of the function is generated.
Note no inlining occurs here—the call to snoc is preserved, with
the resulting OCaml code looking similar to the Lem source code.

The Lem target-representation and inlining mechanisms are
powerful enough to ‘smooth over’ inconsistencies between the
backends. For instance, folds over lists display a surprising variety in
the order in which arguments are expected. Our mechanisms allow
us to provide a consistent interface within Lem for functions such
as these whilst mapping to idiomatic backend code:

declare hol target_rep function foldr = ‘FOLDR‘
declare ocaml target_rep function foldr f b l =
‘List.fold_right‘ f l b

Target representations can also declare a constant as infix for
certain backends. For example, the set-membership constant is
mapped as follows:

declare ocaml target_rep function member = ‘Pset.mem‘
declare hol target_rep function member = infix ‘IN‘
declare html target_rep function member = infix ‘&isin;‘

This function is prefix for OCaml but infix for HOL4. We could also
provide additional associativity and binding strength information
about infix constants in order to avoid generating superfluous paren-
thesis. Note that the user can also provide HTML and LaTeX target



representations and that target representations are not restricted to
valid Lem identifiers.

Unit testing through lemmata The Lem library attempts to clar-
ify the semantics of each function by providing a definition, even
if there are target-specific representations for all targets. Moreover,
assertions and lemma statements can be used to describe the sup-
posed behaviour of library files. As described in §3.11, assertions
are executable tests used for unit testing. They generate executable
testing code for OCaml. For the theorem prover backends they gen-
erate proof obligations which are (mostly) closed automatically by
the prover’s computation mechanisms. Lemmata are non-executable
tests. They are ignored by the OCaml backend, while the theorem
prover backends generate proof obligations that need to be dis-
charged manually by the user. For the snoc example, the library
contains the following assertions and lemmata:

assert snoc_1 : snoc (2:nat) [] = [2]
assert snoc_2 : snoc (2:nat) [3;4] = [3;4;2]
lemma snoc_length :
∀e l. length (snoc e l) = succ (length l)

If both a definition and a target-specific representation are present,
Lem automatically generates a lemma that the target representa-
tion satisfies the definition. For example, the following lemma is
automatically generated for the HOL4 backend:

lemma snoc_def_lemma: ∀l e. (l ⊕ [e]) = (SNOC e l)

Whilst we do not aim to completely describe the semantics of
every function in the Lem library with assertions and lemmata, we
believe this peppering of executable checks and proof obligations
provides some assurance that each of the bindings in the respective
backends has the intended semantics.

5. Example
In this section we show excerpts from one of our major Lem
developments, the C/C++11 axiomatic concurrency model of Batty
et al., highlighting especially where any target-specific features of
Lem were necessary. The complete specification is around 2500 lines
of Lem source (1500 non-comment), defining several related models.
The generated OCaml forms the kernel of our cppmem tool, with a
web interface (also using the HTML) for interactive and exhaustive
exploration of the model on small examples, the generated LaTeX
is used in papers and C/C++11 standards committee working
notes, and the generated HOL4 code is the basis for mechanised
proofs. The generated Coq and Isabelle code has also been used for
(relatively minor) proof experiments.

The specification begins by opening standard Lem libraries:

open import Pervasives

and then proceeds by defining the types of action identifiers,
C/C++11 memory orders, and the memory actions of the model.
Action identifiers are taken to be strings for convenience in the
cppmem user interface; for the meta-theory we just need a type with
a decidable equality and infinitely many inhabitants.

type aid = string

type memory_order =
| NA | Seq_cst | Relaxed | Release
| Acquire | Consume | Acq_rel

type action =
| Load of aid × tid × memory_order × location × cvalue
| Store of aid × tid × memory_order × location × cvalue
| Fence of aid × tid × memory_order
| ...

In the usual ‘axiomatic memory model’ style, the model is expressed
as predicates over a notion of candidate execution, comprising a
set of actions and various relations over them that describe one
execution which might or might not be permitted by the model.
Some of those are collected in the following record type:

type pre_execution =
<| actions : set (action);

threads : set (tid);
lk : location → location_kind;
sb : set (action × action) ;
asw : set (action × action) ;
dd : set (action × action) ;

|>

For the HOL4 meta-theory, we want to consider possibly infinite
candidate executions, therefore the representation of Lem sets as
the usual idiomatic-HOL4 characteristic functions is appropriate. In
the OCaml tool, we will only deal with finite candidate executions,
and so the idiomatic, ordered balanced binary tree representation
is appropriate there. The sets used here all contain only elements
of concrete types (for which the OCaml pervasive comparison will
be correct), so no user instantiation of the SetType type class is
required.

The specification continues with some routine functions defined
by pattern matching, for example:

let is_at_non_atomic_location lk a =
match loc_of a with
| Just l ⇒ (lk l = Non_Atomic)
| Nothing ⇒ false
end

The bulk of the specification consists of definitions of derived
relations and predicates over candidate executions. For example,
given a set of actions and a happens-before relation hb, the following
picks out the write-read pairs in hb for which the write is a visible
side effect (in the terms of the C/C++11 standards) for the read. It
uses a Lem set comprehension, ranging over the supplied hb (which
will be known and finite at execution time in the generated OCaml).
The body of the comprehension uses standard propositional logic
and an existential quantifier, here bounded by the set of actions.

let visible_side_effect_set actions hb =
{ (a,b) | forall ((a,b) IN hb) |
is_write a && is_read b && (loc_of a = loc_of b) &&
not ( exists (c IN actions). not (c IN {a;b}) &&

is_write c && (loc_of c = loc_of b) &&
(a,c) IN hb && (c,b) IN hb) }

The Lem-typeset version of this definition can be used simply
by including

\LEMvisibleSideEffectSet

in a LaTeX source file (after including the Lem-generated definitions
with \usepackage{lem} and \include{Cmm-inc}), to give:

let visible_side_effect_set actions hb =
{ (a, b) | ∀ (a, b) ∈ hb |

is_write a ∧ is_read b ∧ (loc_of a = loc_of b) ∧
¬ ( ∃ c ∈ actions. ¬ (c ∈ {a, b}) ∧

is_write c ∧ (loc_of c = loc_of b) ∧
(a, c) ∈ hb ∧ (c, b) ∈ hb) }

Note the preservation of line breaks and indentation, giving fine
control of the typeset layout. The generated HOL4 in this case is
almost a direct transcription of the Lem source, as HOL4 supports
similar set comprehension forms. The generated OCaml is somewhat
more complex, using Pset library folds, membership tests, and set
constructors, all with a suitable comparison function.



These excerpts are representative of typical Lem usage: math-
ematically straightforward higher-order logic definitions, with the
real content in the details of exactly what the defined relations and
predicates say. Though this development does not use inductively
defined relations or recursively defined data types and functions
extensively, others do, in a straightforward manner. In the previous
sections we discussed many aspects of the Lem design that make
it possible to generate code for all the targets in general, but it is
common for only a few of those to be in play at once.

For this development the only target-specific definitions are as
follows. First, there are those encapsulated in the Lem libraries used:
Basic_classes, Bool, Maybe, Num, Set, List, and Relation (this
development does not use Tuple, Either, Function, Map, String,
Word, or Sorting, or any of the ‘extra’ libraries).

We give a general Lem definition for a predicate
strict_total_order_over but in the HOL4 backend we
bind it to the equivalent HOL4 standard library definition:
declare hol target_rep function strict_total_order_over
= ‘strict_linear_order‘

For Coq we define one measure function in Lem that is used in
a hand proof of the termination of a recursive evaluation function
over a type of trees of lists of named predicates:
type named_predicate_tree =
| Leaf of (complete_execution → bool)
| Node of list (string × named_predicate_tree)

To handle infinitary executions in the meta-theory, the definitions
include assumptions that certain relations of a candidate execution,
e.g. the coherence order, have finite prefixes. This is given a Lem
definition for Isabelle/HOL, mapped to a HOL4 standard library
function (in the same manner as above), and mapped to just a
constant true for OCaml and Coq, which are both dealing only
with the finitary case (using the default Lem set representations in
each).

Then there are a number of definitions which are used only in the
meta-theory, not in the tool, for which we do not produce OCaml
output. This includes the top-level definition of each model (the 15
behaviour predicates), which are parameterised on a thread-local
semantics (whereas in the tool we use a fixed thread-local semantics).
The meta-theory also uses a receptiveness assumption and 11 other
auxiliaries.

The amount of target-specific code needed in other developments
is similarly small. For example, in CakeML there are 10 HOL4-
specific source lines, introducing 5 HOL4 library functions that are
not in the Lem library.

This C/C++11 development is also typical in that it is the
product of a considerable investment of effort (multiple person-
years by several people, of dialogue with the standards committee,
experimentation, and proof) and that it is a specification that we need
to maintain over an extended period of time. Manually propagating
changes from versions in one target to another would have been
prohibitive.

The Lem design is focussed on the reuse of a specification
in multiple targets, not on reuse of parts of one specification in
another, but the latter is also an important question. In particular,
here the metatheory by Batty is over the model as above, but for a
different purpose we have recently extended the model, adding new
constructors of the action type and corresponding new function
and predicate clauses. At present we do this (while avoiding forking
the main specification file) by ad hoc means, but ideally one might
want a mixin-style module composition.

6. Conclusion
Lem provides a new alternative for building large-scale semantic
models and specifications, combining the uniform language design

and ease of use of a good programming language with the defini-
tional expressiveness provided by a theorem prover, and supporting
portable definitions. It is more general-purpose than existing speci-
fication languages like K, Ott, or PLT Redex. Using Lem inevitably
imposes some restrictions compared with working natively in a
single prover but offers some advantages even in that case, and
for modelling/specification exercises where the model creation and
validation effort is large, the prospect of portability is compelling. It
is demonstrably flexible enough to naturally specify a wide range of
large-scale models while also allowing users to use their preferred
tools for proof. That said, it is not perfect (of course), and we would
like to revisit some aspects of the design with the benefit of hind-
sight: the type class mechanism, bool vs prop, multiple prover set
representations, and inductive relation code generation.

Lem is a higher-order, typed, functional language, as are all of
the backends that Lem currently targets. We anticipate that targeting
new languages that fall into this pattern, for example Haskell, SML
or Matita, would be straightforward.

Lem’s syntax and type system are formally defined, but its logical
semantics is defined by the translations into the targets. We attempt
no formal guarantee that the result of translating into one target
has the same mathematical meaning as that of translating into
another, and indeed sometimes they intentionally do not (§3.9).
Even when intuitively they do, stating and proving that fact would
require creating, as a starting point, formal models of the semantics
of the various targets, including Coq’s underlying type system,
Isabelle’s datatype package, HOL’s inductive relations package,
etc. That would be worthwhile and challenging, but ours here is a
first, pragmatic, goal: to support the working specifier.
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