
On the correctness of an optimising assembler
for the Intel MCS-51 microprocessor?

Dominic P. Mulligan and Claudio Sacerdoti Coen

Dipartimento di Scienze dell’Informazione,
Universitá degli Studi di Bologna

Abstract. We present a proof of correctness in Matita for an optimising
assembler for the MCS-51 microcontroller. The efficient expansion of
pseudoinstructions, namely jumps, into machine instructions is complex.
We isolate the decision making over how jumps should be expanded from
the expansion process itself as much as possible using ‘policies’, making
the proof of correctness for the assembler more straightforward.

Our proof strategy contains a tracking facility for ‘good addresses’ and
only programs that use good addresses have their semantics preserved
under assembly, as we observe that it is impossible for an assembler to
preserve the semantics of every assembly program. Our strategy offers
increased flexibility over the traditional approach to proving the correct-
ness of assemblers, wherein addresses in assembly are kept opaque and
immutable. In particular, we may experiment with allowing the benign
manipulation of addresses.

Keywords: Verified software, CerCo (Certified Complexity), MCS-51
microcontroller, Matita proof assistant

1 Introduction

We consider the formalisation of an assembler for the Intel MCS-51 8-bit mi-
croprocessor in the Matita proof assistant [?]. This formalisation forms a major
component of the EU-funded CerCo (‘Certified Complexity’) project [?], con-
cerning the construction and formalisation of a concrete complexity preserving
compiler for a large subset of the C programming language.

The MCS-51 dates from the early 1980s and is commonly called the 8051/8052.
Derivatives are still widely manufactured by a number of semiconductor foundries,
with the processor being used especially in embedded systems.

The MCS-51 has a relative paucity of features compared to its more modern
brethren, with the lack of any caching or pipelining features meaning that timing
of execution is predictable, making the MCS-51 very attractive for CerCo’s
ends. However, the MCS-51’s paucity of features—though an advantage in many

? The project CerCo acknowledges the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant number: 243881.

respects—also quickly becomes a hindrance, as the MCS-51 features a relatively
minuscule series of memory spaces by modern standards. As a result our C
compiler, to be able to successfully compile realistic programs for embedded
devices, ought to produce ‘tight’ machine code.

To do this, we must solve the ‘branch displacement’ problem—deciding how
best to expand pseudojumps to labels in assembly language to machine code jumps.
The branch displacement problem arises when pseudojumps can be expanded in
different ways to real machine instructions, but the different expansions are not
equivalent (e.g. differ in size or speed) and not always correct (e.g. correctness
is only up to global constraints over the compiled code). For instance, some
jump instructions (short jumps) are very small and fast, but they can only reach
destinations within a certain distance from the current instruction. When the
destinations are too far away, larger and slower long jumps must be used. The
use of a long jump may augment the distance between another pseudojump and
its target, forcing another long jump use, in a cascade. The job of the optimising
compiler (assembler) is to individually expand every pseudo-instruction in such a
way that all global constraints are satisfied and that the compiled program is
minimal in size and faster in concrete time complexity. This problem is known to
be computationally hard for most CISC architectures (see [?]).

To simplify the CerCo C compiler we have chosen to implement an optimising
assembler whose input language the compiler will target. Labels, conditional
jumps to labels, a program preamble containing global data and a MOV instruction
for moving this global data into the MCS-51’s one 16-bit register all feature in
our assembly language. We further simplify by ignoring linking, assuming that
all our assembly programs are pre-linked.

Another complication we have addressed is that of the cost model. CerCo
imposes a cost model on C programs or, more specifically, on simple blocks of
instructions. This cost model is induced by the compilation process itself, and
its non-compositional nature allows us to assign different costs to identical C
statements depending on how they are compiled. In short, we aim to obtain a very
precise costing for a program by embracing the compilation process, not ignoring
it. At the assembler level, this is reflected by our need to induce a cost model
on the assembly code as a function of the assembly program and the strategy
used to solve the branch displacement problem. In particular, our optimising
assembler should also return a map that assigns a cost (in clock cycles) to every
instruction in the source program. We expect the induced cost to be preserved by
the assembler: we will prove that the compiled code tightly simulates the source
code by taking exactly the predicted amount of time.

Note that the temporal tightness of the simulation is a fundamental pre-
requisite of the correctness of the simulation because some functions of the
MCS-51—timers and I/O—depend on the microprocessor’s clock. If the pseudo-
and concrete clock differ the result of an I/O operation may not be preserved.

Branch displacement algorithms must have a deep knowledge of the way the
rest of the assembler works in order to build globally correct solutions. Proving
their correctness is quite a complex task (see, for instance, the companion

paper [?]). Nevertheless, the correctness of the whole assembler only depends on
the correctness of the branch displacement algorithm. Therefore, in the rest of
the paper, we presuppose the existence of a correct policy, to be computed by a
branch displacement algorithm if it exists. A policy is the decision over how any
particular jump should be expanded; it is correct when the global constraints are
satisfied. The assembler fails to assemble an assembly program if and only if a
correct policy does not exist. This is stated in an elegant way in the dependent
type of the assembler: the assembly function is total over a program, a policy
and the proof that the policy is correct for that program.

A final complication in the proof is due to the kind of semantics associated
to pseudo-assembly programs. Should assembly programs be allowed to freely
manipulate addresses? The traditional answer is ‘no’: values stored in memory
or registers are either concrete data or symbolic addresses. The latter can only
be manipulated in very restricted ways and programs that do not do so are not
assigned a semantics and cannot be reasoned about. All programs that have a
semantics have it preserved by the assembler. We take an alternative approach,
allowing programs to freely manipulate addresses non-symbolically but only
granting a preservation of semantics to those programs that act in ‘well-behaved’
ways. In principle, this should allow some reasoning on the actual semantics of
malign programs. In practice, we note how our approach facilitates more code
reuse between the semantics of assembly code and object code.

The formalisation of the assembler and its correctness proof are given in
Sect. 2. Sect. 3 presents the conclusions and relations with previous work.

Matita Matita is a proof assistant based on a variant of the Calculus of (Co)inductive
Constructions [?]. It features dependent types that we exploit in the formalisation.
The (simplified) syntax of the statements and definitions in the paper should be
self-explanatory. Pairs are denoted with angular brackets, 〈−,−〉.

Matita features a liberal system of coercions. It is possible to define a uniform
coercion λx.〈x, ?〉 from every type T to the dependent product Σx : T.P x. The
coercion opens a proof obligation that asks the user to prove that P holds for x.
When a coercion must be applied to a complex term (a λ-abstraction, a local
definition, or a case analysis), the system automatically propagates the coercion
to the sub-terms For instance, to apply a coercion to force λx.M : A → B to
have type ∀x : A.Σy : B.P x y, the system looks for a coercion from M : B to
Σy : B.P x y in a context augmented with x : A. This is significant when the
coercion opens a proof obligation, as the user will be presented with multiple, but
simpler proof obligations in the correct context. In this way, Matita supports the
‘Russell’ proof methodology developed by Sozeau in [?], with an implementation
that is lighter and more tightly integrated with the system than that of Coq.

2 Certification of an optimising assembler

Our aim here is to explain the main ideas and steps of the certified proof of
correctness for an optimising assembler for the MCS-51.

In Subsect. 2.1 we sketch an operational semantics (a realistic and efficient
emulator) for the MCS-51. We also introduce a syntax for decoded instructions
that will be reused for the assembly language.

In Subsect. 2.2 we describe the assembly language and its operational se-
mantics. The latter is parametric in the cost model that will be induced by the
assembler, reusing the semantics of the machine code on all ‘real’ instructions.

Branch displacement policies are introduced in Subsect. 2.3 where we also
describe the assembler as a function over policies as previously described.

To prove our assembler correct we show that the object code given in output,
together with a cost model for the source program, simulates the source program
executed using that cost model. The proof can be divided into two main lemmas.
The first is correctness with respect to fetching, described in Subsect. 2.4. Roughly
it states that a step of fetching at the assembly level, returning the decoded
instruction I, is simulated by n steps of fetching at the object level that returns
instructions J1, . . . , Jn, where J1, . . . , Jn is, amongst the possible expansions of I,
the one picked by the policy. The second lemma states that J1, . . . , Jn simulates
I but only if I is well-behaved, i.e. manipulates addresses in ‘good’ ways. To
keep track of well-behaved address manipulations we record where addresses are
currently stored (in memory or an accumulator). We introduce a dynamic checking
function that inspects this map to determine if the operation is well-behaved, with
an affirmative answer being the pre-condition of the lemma. The second lemma
is detailed in Subsect. 2.5 where we also establish correctness of our assembler as
a composition of the two lemmas: programs that are well-behaved when executed
under the cost model induced by the compiler are correctly simulated by the
compiled code.

2.1 Machine code and its semantics

We implemented a realistic and efficient emulator for the MCS-51 microprocessor.
An MCS-51 program is just a sequence of bytes stored in the read-only code
memory of the processor, represented as a compact trie of bytes addressed by
the program counter. The Status of the emulator is a record that contains the
microprocessor’s program counter, registers, stack pointer, clock, special function
registers, data memory, and so on. The value of the code memory is a parameter
of the record since it is not changed during execution.

The Status records is itself an instance of a more general datatype PreStatus
that abstracts over the implementation of code memory in order to reuse the
same datatype for the semantics of the assembly language in the next section.

The execution of a single instruction is performed by the execute 1 function,
parametric over the content cm of the code memory:

definition execute_1: ∀cm. Status cm → Status cm

The function execute 1 closely matches the fetch-decode-execute cycle of
the MCS-51 hardware, as described by a Siemen’s manufacturer’s data sheet [?].
Fetching and decoding are performed simultaneously: we first fetch, using the

program counter, from code memory the first byte of the instruction to be
executed, decoding the resulting opcode, fetching more bytes as is necessary to
decode the arguments. Decoded instructions are represented by the instruction

data type which extends a data type of preinstructions that will be reused for
the assembly language.

inductive preinstruction (A: Type[0]): Type[0] :=

| ADD: Jacc_aK → Jregistr; direct; indirect; dataK → preinstruction A

| DEC: Jacc_a; registr; direct; indirectK → preinstruction A

| JB: Jbit_addrK → A → preinstruction A

| . . .
inductive instruction: Type[0] :=

| LCALL: Jaddr16K → instruction

| AJMP: Jaddr11K → instruction

| RealInstruction: preinstruction JrelativeK → instruction.

| . . .

The MCS-51 has many operand modes, but an unorthogonal instruction set:
every opcode is only enable for a finite subset of the possible operand modes.
Here we exploit dependent types and an implicit coercion to synthesise the type
of arguments of opcodes from a vector of names of operand modes. For example,
ACC has two operands, the first one constrained to be the A accumulator, and the
second one to be a disjoint union of register, direct, indirect and data operand
modes.

The parameterised type A of preinstruction represents the addressing mode
allowed for conditional jumps; in the RealInstruction constructor we constraint
it to be a relative offset. A different instantiation (labels) will be used in the next
section for assembly programs.

Once decoded, execution proceeds by a case analysis on the decoded instruc-
tion, following the operation of the hardware. For example, the DEC preinstruction
(‘decrement’) is executed as follows:

| DEC addr ⇒
let s := add_ticks1 s in

let 〈result, flags〉 := sub_8_with_carry (get_arg_8 s true addr)

(bitvector_of_nat 8 1) false in

set_arg_8 s addr result

Here, add ticks1 models the incrementing of the internal clock of the micro-
processor; it is a parameter of the semantics of preinstructions that is fixed in
the semantics of instructions according to the manufacturer datasheet.

2.2 Assembly code and its semantics

An assembly program is a list of potentially labelled pseudoinstructions, bundled
with a preamble consisting of a list of symbolic names for locations in data
memory (i.e. global variables). All preinstructions are pseudoinstructions, but
conditional jumps are now only allowed to use Identifiers (labels) as their
target.

inductive pseudo_instruction: Type[0] :=

| Instruction: preinstruction Identifier → pseudo_instruction

. . .
| Jmp: Identifier → pseudo_instruction

| Call: Identifier → pseudo_instruction

| Mov: JdptrK → Identifier → pseudo_instruction.

The pseudoinstructions Jmp, Call and Mov are generalisations of machine code
unconditional jumps, calls and move instructions respectively, all of whom act
on labels, as opposed to concrete memory addresses. The object code calls and
jumps that act on concrete memory addresses are ruled out of assembly programs
not being included in the preinstructions (see previous Section).

Execution of pseudoinstructions is an endofunction on PseudoStatus. A
PseudoStatus is an instance of PreStatus that differs from a Status only in the
datatype used for code memory: a list of optionally labelled pseudoinstructions
versus a trie of bytes. The PreStatus type is crucial for sharing the majority of
the semantics of the two languages.

Emulation for pseudoinstructions is handled by execute 1 pseudo instruction:

definition execute_1_pseudo_instruction:

∀cm. ∀costing:(∀ppc: Word. ppc < |snd cm| → nat × nat).

∀s:PseudoStatus cm. program_counter s < |snd cm| → PseudoStatus cm

The type of execute 1 pseudo instruction is more involved than that of
execute 1. The first difference is that execution is only defined when the program
counter points to a valid instruction, i.e. it is smaller than the length |snd cm|
of the program. The second difference is the abstraction over the cost model,
abbreviated here as costing. The costing is a function that maps valid program
counters to pairs of natural numbers representing the number of clock ticks used
by the pseudoinstructions stored at those program counters. For conditional
jumps the two numbers differ to represent different costs for the ‘true branch’ and
the ‘false branch’. In the next section we will see how the optimising assembler
induces the only costing (induced by the branch displacement policy deciding
how to expand pseudojumps) that is preserved by compilation.

Execution proceeds by first fetching from pseudo-code memory using the
program counter—treated as an index into the pseudoinstruction list. This index
is always guaranteed to be within the bounds of the pseudoinstruction list due
to the dependent type placed on the function. No decoding is required. We then
proceed by case analysis over the pseudoinstruction, reusing the code for object
code for all instructions present in the MCS-51’s instruction set. For all newly
introduced pseudoinstructions, we simply translate labels to concrete addresses
before behaving as a ‘real’ instruction.

We do not perform any kind of symbolic execution, wherein data is the disjoint
union of bytes and addresses, with addresses kept opaque and immutable. Labels
are immediately translated before execution to concrete addresses, and registers
and memory locations only ever contain bytes, never labels. As a consequence,
we allow the programmer to mangle, change and generally adjust addresses as

they want, under the proviso that the translation process may not be able to
preserve the semantics of programs that do this. This will be further discussed in
Subsect. 2.5. The only limitation introduced by this approach is that the size of
assembly programs is bounded by 216.

2.3 The assembler

The assembler takes in input an assembly program made of pseudoinstructions
and a branch displacement policy for it. It returns both the object code (a list of
bytes to be loaded in code memory for execution) and the costing for the source.

Conceptually the assembler works in two passes. The first pass expands every
pseudoinstruction into a list of machine code instructions using the function
expand pseudo instruction. The policy determines which expansion among
the alternatives will be chosen for pseudo-jumps and pseudo-calls. Once the
expansion is performed, the cost of the pseudoinstruction is defined as the cost of
the expansion. The second pass encodes as a list of bytes the expanded instruction
list by mapping the function assembly1 across the list, and then flattening.

[P1, . . . Pn]

Pi

Pi

expand pseudo instruction−−−−−−−−−−−−−−−−→[I1i,...I
q
i]

assembly1∗−−−−−−−−−−−−−−→[0110]−−−→
assembly 1 pseudo instruction

[0110]


∗

−−→
assembly

[. . . 0110 . . .]

In order to understand the type for the policy, we briefly hint at the branch
displacement problem for the MCS-51. A detailed description is found in [?]. The
MCS-51 features three unconditional jump instructions: LJMP and SJMP—‘long
jump’ and ‘short jump’ respectively—and an 11-bit oddity of the MCS-51, AJMP.
Each of these three instructions expects arguments in different sizes and behaves
in markedly different ways: SJMP may only perform a ‘local jump’ to an address
closer then 27 bytes; LJMP may jump to any address in the MCS-51’s memory
space and AJMP may jump to any address in the current memory page. Memory
pages partition the code memory into 28 disjoint areas. The size of each opcode
is different, with long jumps being larger than the other two. Because of the
presence of AJMP, an optimal global solution may be locally unoptimal, employing
a long jump where a shorter one could be used to force later jumps to stay inside
single memory pages.

Similarly, a conditional pseudojump must be translated potentially into a
configuration of machine code instructions, depending on the distance to the
jump’s target. For example, to translate a jump to a label, a single conditional
jump pseudoinstruction may be translated into a block of three real instructions
as follows (here, JZ is ‘jump if accumulator is zero’):

JZ label JZ size of SJMP instruction
. . . translates to SJMP size of LJMP instruction

label : MOV A B =⇒ LJMP address of label
. . .
MOV A B

Naturally, if label is ‘close enough’, a conditional jump pseudoinstruction is
mapped directly to a conditional jump machine instruction; the above translation
only applies if label is not sufficiently local.

The cost returned by the assembler for a pseudoinstruction is set to be the
cost of its expansion in clock cycles. For conditional jumps that are expanded as
just shown, the costs of taking the true and false branches are different and both
need to be returned.

The expand pseudo instruction function is driven by a policy in the choice
of expansion of pseudoinstructions. The simplest idea is then to define policies as
functions that maps jumps to their size. This simple idea, however, is impractical
because short jumps require the offset of the target. For instance, suppose that
at address ppc in the assembly program we found Jmp l such that l is associated
to the pseudo-address a and the policy wants the Jmp to become a SJMP δ. To
compute δ, we need to know what the addresses ppc+1 and a will become in the
assembled program to compute their difference. The address a will be associated
to is a function of the expansion of all the pseudoinstructions between ppc and
a, which is still to be performed when expanding the instruction at ppc.

To solve the issue, we define the policy policy as a map from a valid pseudo-
address to the corresponding address in the assembled program. Therefore, δ in
the example above can be computed simply as policy(a) - policy(ppc + 1).
Moreover, the expand pseudo instruction emits a SJMP only after verifying for
each Jmp that δ < 128. When this is not the case, the function emits an AJMP if
possible, or an LJMP otherwise, therefore always picking the locally best solution.
In order to accommodate those optimal solutions that require local sub-optimal
choices, the policy may also return a Boolean used to force the translation of a
Jmp into a LJMP even if δ < 128. An essentially identical mechanism exists for
call instructions and conditional jumps.

In order for the translation of a jump to be correct, the address associated
to a by the policy and by the assembler must coincide. The latter is the sum of
the size of all the expansions of the pseudo-instructions that precede the one at
address a: the assembler just concatenates all expansions sequentially. To grant
this property, we impose a correctness criterion over policies. A policy is correct
when policy(0) = 0 and for all valid pseudoaddresses ppc

policy(ppc+1) = policy(ppc) + instruction size(ppc) ≤ 216

Here instruction size(ppc) is the size in bytes of the expansion of the pseudoin-
struction found at pcc, i.e. the length of assembly 1 pseudo instruction(ppc).

2.4 Correctness of the assembler with respect to fetching

We now begin the proof of correctness of the assembler. Correctness consists of
two properties: firstly that the assembly process never fails when fed a correct
policy and secondly the object code returned simulates the source code when the
latter is executed according to the cost model also returned by the assembler. This
second property can be further decomposed into two main properties: correctness
with respect to fetching and decoding and correctness with respect to execution.

Informally, correctness with respect to fetching is the following statement:
when we fetch an assembly pseudoinstruction I at address ppc, then we can fetch
the expanded pseudoinstruction(s) [J1, ..., Jn] = fetch pseudo instruction

... I ppc from policy ppc in the code memory obtained by loading the assem-
bled object code. This section reviews the main steps to prove correctness with
respect to fetching. Subsect. 2.5 deals with correctness with respect to execution:
the instructions [J1, ..., Jn] simulate the pseudoinstruction I.

The (slightly simplified) Russell type for the assembly function is:

definition assembly:

∀program: pseudo_assembly_program. ∀policy.
Σassembled: list Byte × (BitVectorTrie nat 16).

|program| ≤ 216 → policy is correct for program →
policy (|program|) = |fst assembled| ≤ 216 ∧
∀ppc: pseudo_program_counter. ppc < 216 →
let pseudo_instr := fetch from program at ppc in

let assembled_i := assemble pseudo_instr in

|assembled_i| ≤ 216 ∧
∀n: nat. n < |assembled_i| → ∃k: nat.

nth assembled_i n = nth assembled (policy ppc + k).

In plain words, the type of assembly states the following. Given a correct policy
for the program to be assembled, the assembler never fails and returns some
object code and a costing function. Under the condition that the policy is ‘correct’
for the program and the program is fully addressable by a 16-bit word, the object
code is also fully addressable by a 16-bit word. Moreover, the result of assembling
the pseudoinstruction obtained fetching from the assembly address ppc is a list
of bytes found in the generated object code starting from the object code address
policy(ppc).

Essentially the type above states that the assembly function correctly expands
pseudoinstructions, and that the expanded instruction reside consecutively in
memory. The fundamental hypothesis is correctness of the policy which allows
us to prove the inductive step of the proof, which proceeds by induction over
the assembly program. It is then straightforward to lift the property from lists
of bytes (object code) to tries of bytes (i.e. code memories after loading). The
assembly ok lemma does the lifting.

We have established that every pseudoinstruction is compiled to a sequence of
bytes that is found in memory at the expect place. This does not trivially imply
that those bytes will be decoded in a correct way to recover the pseudoinstruction
expansion. Indeed, we first need to prove a lemma that establishes that the fetch
function is the left inverse of the assembly1 function:

lemma fetch_assembly:

∀pc: Word.

∀i: instruction.

∀code_memory: BitVectorTrie Byte 16.

∀assembled: list Byte.

assembled = assemble i →

let len := |assembled| in
let pc_plus_len := pc + len in

encoding_check pc pc_plus_len assembled →
let 〈instr, pc’, ticks〉 := fetch pc in

instr = i ∧ ticks = (ticks_of_instruction instr) ∧ pc’ = pc_plus_len.

We read fetch assembly as follows. Any time the encoding assembled of an
instruction i is found in code memory starting at position pc (the hypothesis
encoding check . . .), when we fetch at address pc retrieving the instruction i,
the new program counter is pc plus the length of the encoding, and the cost of the
fetched instruction is the one predicted for i. Or, in plainer words, assembling,
storing and then immediately fetching gets you back to where you started.

Remembering that assembly 1 pseudo instruction is the composition of
assembly1 with expand pseudo instruction, we can lift the previous result
from instructions (already expanded) to pseudoinstructions (to be expanded):

lemma fetch_assembly_pseudo:

∀program: pseudo_assembly_program.

∀policy,ppc,code_memory.
let 〈preamble, instr_list〉 := program in

let pi := π1 (fetch_pseudo_instruction instr_list ppc) in

let pc := policy ppc in

let instructions := expand_pseudo_instruction policy ppc pi in

let 〈l, a〉 := assembly_1_pseudoinstruction policy ppc pi in

let pc_plus_len := pc + l in

encoding_check code_memory pc pc_plus_len a →
fetch_many code_memory pc_plus_len pc instructions.

Here, l is the number of machine code instructions the pseudoinstruction at hand
has been expanded into. We assemble a single pseudoinstruction with assembly -

1 pseudoinstruction, which internally calls expand pseudo instruction. The
function fetch many fetches multiple machine code instructions from code mem-
ory and performs some routine checks.

Intuitively, Lemma fetch assembly pseudo says that expanding a pseudoin-
struction into n instructions, encoding the instructions and immediately fetching
n instructions back yield exactly the expansion.

Combining assembly ok with the previous lemma and a proof of correctness
of loading object code in memory, we finally get correctness of the assembler
with respect to fetching:

lemma fetch_assembly_pseudo2:

∀program. |snd program| ≤ 216 →
∀policy. policy is correct for program →
∀ppc. ppc < |snd program| →
let 〈assembled, costs’〉 := π1 (assembly program policy) in

let cmem := load_code_memory assembled in

let 〈pi, newppc〉 := fetch_pseudo_instruction program ppc in

let instructions := expand_pseudo_instruction policy ppc pi in

fetch_many cmem (policy newppc) (policy ppc) instructions.

Here we use π1 to project the existential witness from the Russell-typed function
assembly. We read fetch assembly pseudo2 as follows. Suppose we are given
an assembly program which can be addressed by a 16-bit word and a policy
that is correct for this program. Suppose we are able to successfully assemble
an assembly program using assembly and produce a code memory, cmem. Then,
fetching a pseudoinstruction from the pseudo-code memory stored in the interval
[ppc, newppc] corresponds to fetching a sequence of instructions from the real code
memory, stored in the interval [policy(ppc), policy(ppc+ 1)]. The correspondence
is precise: the fetched instructions are exactly those obtained expanding the
pseudoinstruction according to policy.

In order to complete the proof of correctness of the assembler, we need to
prove that each pseudoinstruction is simulated by the execution of its expansion
(correctness with respect to execution). In general this is not the case when
instructions freely manipulate program addresses. Characterising well-behaved
programs and proving correctness with respect to expansion is discussed next.

2.5 Correctness for ‘well-behaved’ assembly programs

Most assemblers can map a single pseudoinstruction to zero or more machine
instructions, whose size (in bytes) is not independent of the expansion. The
assembly process therefore always produces a map (which for us is just the policy)
that associates to each assembly address a a code memory address policy(a)

where the instructions that correspond to the pseudoinstruction at a are located.
Ordinarily, the map is not just a linear function, but depends on the local choices
and global optimisations performed.

During execution of assembly code, addresses can be stored in memory
locations or in the registers. Moreover, arithmetical operations can be applied to
addresses, for example to compare them or to shift a function pointer in order to
implement C switch statements. In order to show that the object code simulates
the assembly code we must compute the processor status that corresponds to the
assembly status. In particular, those a in memory that are used as data should
be preserved as a, but those used as addresses should be changed into policy(a).
Moreover, every arithmetic operation should commute with policy in order for
the semantics to be preserved.

Following the previous observation, we can ask if it is possible at all for an
assembler to preserve the semantics of an assembly program. The traditional
approach to the verification of assemblers answers the question in the affirmative
by restricting the semantics of assembly programs. In particular, the type of
memory cells and registers is set to the disjoint union of data and symbolic
addresses, and the semantics is always forced to consider all possible combinations
of arguments (data vs. data, data vs. addresses, and so on), rejecting operations
whose semantics cannot be preserved.

Mem : Addr→ Bytes + Addr J−K : Instr→ Mem→ option Mem

JMUL @A1 @A2KM =


Byte b1, Byte b2 → Some(M with accumulator := b1 + b2)

−, Addr a → None

Addr a, − → None

This approach has two main limitations. The first one is that it does not assign
any semantics to interesting programs that could intentionally mangle addresses
for malign (e.g. viruses) or benign (e.g. operating systems) purposes. The second
is that it does not allow one to adequately share the semantics of assembly
pseudoinstructions and object code instructions: only the Byte-Byte branch
above can share the semantics with the object code MUL.

In this paper we have already taken a different approach from Sect. 2.2, where
we have assigned a semantics to every assembly program by not distinguishing
at all between data and symbolic addresses. Memory cells and registers always
hold bytes, and symbolic labels are mapped to absolute addresses before exe-
cution. Consequently we do not expect that all assembly programs will have
their semantics respected by object code. We call those programs that do well-
behaved. Further, we can now reason over the semantics of programs that are
not well-behaved, and that we can handle well-behavedness as an open predicate,
recognising more and more good behaviours as required. Naturally, compilers
that target our assembler will need to produce well-behaved programs, which is
usually the case by construction.

The definition of well-behavedness we employ uses a map to keep track of
the memory locations and registers that hold addresses during execution of an
assembly program. The map acts as a sort of dynamic typing system sitting atop
memory. This approach seems similar to one taken by Tuch et al [?] for reasoning
about low-level C code.

The semantics of an assembly program is then augmented with a function that
at each execution step updates the map, signalling an error when the program
performs an ill-behaved operation. The actual computation is not performed by
this mechanism, being already part of the assembly semantics.

AddrMap : Addr→ {Data,Addr} J−K : Instr→ AddrMap→ option AddrMap

JMUL @A1 @A2KM =


Data, Data → Some(Mwith accumulator :=Data)

−, Addr a → None

Addr a, − → None

To prove semantic preservation we must associate an object code status to each
assembly pseudostatus. This operation is driven by the current AddrMap: if at
address a the assembly level memory holds d, then if AddrMap(a) = Data the ob-
ject code memory will hold d (data is preserved), otherwise it will hold policy(d).
If all the operations accepted by the address update map are well-behaved, this
is sufficient to show preservation of the semantics for those computation steps
that are well-behaved, i.e. such that the map update does not fail.

We now apply the previous idea to the MCS-51, an 8-bit processor whose
code memory is word addressed. All MCS-51 operations can therefore only

manipulate and store one half of the address at a time (lower or higher bits). For
instance, a memory cell could contain just the lower 8 bits of an address a. The
corresponding cell at object code level must therefore hold the lower 8 bits of
policy(a), which can be computed only if we can also retrieve the higher 8 bits
of a. We achieve this by storing the missing half of an address in the AddrMap —
called internal pseudo address map in the formalisation.

definition address_entry := upper_lower × Byte.

definition internal_pseudo_address_map :=

(BitVectorTrie address_entry 7) × (BitVectorTrie address_entry 7)

× (option address_entry).

Here, upper lower is an inductive type with two constructors: Upper and Lower.
The map consists of three components to track addresses in lower and upper
internal ram and also in the accumulator A. If an assembly address a holds h and
if the current internal pseudo address map maps a to 〈 Upper, l〉, then h is
the upper part of the h·l address and a will hold the upper part of policy(h·l)
in the object code status.

The relationship between assembly pseudostatus and object code status is
computed by the following function which deterministically maps each pseudosta-
tus into a corresponding status. It takes in input the policy and both the current
pseudostatus and the current tracking map in order to identify those memory
cells and registers that hold fragments of addresses to be mapped using policy

as previously explained. It also calls the assembler to replace the code memory of
the assembly status (i.e. the assembly program) with the object code produced
by the assembler.

definition status_of_pseudo_status:

internal_pseudo_address_map → ∀pap. ∀ps: PseudoStatus pap.

∀policy. Status (code_memory_of_pseudo_assembly_program pap policy)

The function that implements the tracking map update, previously denoted by
J−K, is called next internal pseudo address map in the formalisation. For the
time being, we accept as good behaviours address copying amongst memory cells
and the accumulator (MOV pseudoinstruction) and the use of the CJNE conditional
jump that compares two addresses and jumps to a given label if the two labels are
equal. Moreover, RET to return from a function call is well-behaved iff the lower
and upper parts of the return address, fetched from the stack, are both marked
as complementary parts of the same address (i.e. h is tracked as 〈Upper,l〉 and
l is tracked as 〈Lower,h〉. These three operations are sufficient to implement the
backend of the CerCo compiler. Other good behaviours could be recognised in
the future, for instance in order to implement the C branch statement efficiently.

definition next_internal_pseudo_address_map: internal_pseudo_address_map →
∀cm. (Identifier → PseudoStatus cm → Word) → ∀s: PseudoStatus cm.

program_counter s < 216 → option internal_pseudo_address_map

We now state the (simplified) statement of correctness of our compiler, whose
proofs combines correctness with respect to fetching and correctness with respect

to execution. It states that the well-behaved execution of a single assembly
pseudoinstruction according to the cost model induced by compilation is correctly
simulated by the execution of (possibly) many machine code instructions.

theorem main_thm:

∀M, M’: internal_pseudo_address_map.

∀program: pseudo_assembly_program.

∀program_in_bounds: |program| ≤ 216.

∀policy. policy is correct for program.

∀ps: PseudoStatus program. ps < |program|.
next_internal_pseudo_address_map M program . . .= Some M’ →
∃n. execute n (status_of_pseudo_status M ps policy) =

status_of_pseudo_status M’

(execute_1_pseudo_instruction program (ticks_of program policy) ps)

policy.

The statement is standard for forward simulation, but restricted to PseudoStatuses
ps whose tracking map is M and who are well-behaved according to internal -

pseudo address map M. The ticks of program policy function returns the
costing computed by assembling the program using the given policy. An obvious
corollary of main thm is the correct simulation of n well-behaved steps by some
number of steps m, where each step must be well-behaved with respect to the
tracking map returned by the previous step.

3 Conclusions

We are proving the correctness of an assembler for MCS-51 assembly language.
Our assembly language features labels, arbitrary conditional and unconditional
jumps to labels, global data and instructions for moving this data into the MCS-
51’s single 16-bit register. Expanding these pseudoinstructions into machine code
instructions is not trivial, and the proof that the assembly process is ‘correct’, in
that the semantics of a subset of assembly programs are not changed is complex.

The formalisation is a component of CerCo which aims to produce a verified
concrete complexity preserving compiler for a large subset of the C language. The
verified assembler, complete with the underlying formalisation of the semantics
of MCS-51 machine code, will form the bedrock layer upon which the rest of
CerCo will build its verified compiler platform.

We may compare our work to an ‘industrial grade’ assembler for the MCS-51:
SDCC [?], the only open source C compiler that targets the MCS-51 instruction
set. It appears that all pseudojumps in SDCC assembly are expanded to LJMP

instructions, the worst possible jump expansion policy from an efficiency point of
view. Note that this policy is the only possible policy in theory that makes every
assembly program well-behaved, preserving its the semantics during the assembly
process. This comes at the expense of assembler completeness as the generated
program may be too large for code memory, there being a trade-off between the
completeness of the assembler and the efficiency of the assembled program. The

definition and proof of a terminating, correct jump expansion policy is described
elsewhere [?].

Verified assemblers could also be applied to the verification of operating
system kernels and other formalised compilers. For instance the verified seL4
kernel [?], CompCert [?] and CompCertTSO [?] all explicitly assume the existence
of trustworthy assemblers. The fact that an optimising assembler cannot preserve
the semantics of all assembly programs may have consequences for these projects.

Our formalisation exploits dependent types in different ways and for multiple
purposes. The first purpose is to reduce potential errors in the formalisation of the
microprocessor. Dependent types are used to constrain the size of bitvectors and
tries that represent memory quantities and memory areas respectively. They are
also used to simulate polymorphic variants in Matita, in order to provide precise
typings to various functions expecting only a subset of all possible addressing
modes that the MCS-51 offers. Polymorphic variants nicely capture the absolutely
unorthogonal instruction set of the MCS-51 where every opcode must accept its
own subset of the 11 addressing mode of the processor.

The second purpose is to single out sources of incompleteness. By abstracting
our functions over the dependent type of correct policies, we were able to manifest
the fact that the compiler never refuses to compile a program where a correct
policy exists. This also allowed to simplify the initial proof by dropping lemmas
establishing that one function fails if and only if some previous function does so.

Finally, dependent types, together with Matita’s liberal system of coercions,
allow us to simulate almost entirely in user space the proof methodology ‘Russell’
of Sozeau [?]. Not every proof has been carried out in this way: we only used
this style to prove that a function satisfies a specification that only involves that
function in a significant way. It would not be natural to see the proof that fetch
and assembly commute as the specification of one of the two functions.

Related work We are not the first to consider the correctness of an assembler
for a non-trivial assembly language. The most impressive piece of work in this
domain is Piton [?], a stack of verified components, written and verified in ACL2,
ranging from a proprietary FM9001 microprocessor verified at the gate level,
to assemblers and compilers for two high-level languages—Lisp and µGypsy [?].
Klein and Nipkow also provide a compiler, virtual machine and operational
semantics for the Jinja [?] language and prove that their compiler is semantics
and type preserving.

Though other verified assemblers exist what sets our work apart from that
above is our attempt to optimise the generated machine code. This complicates a
formalisation as an attempt at the best possible selection of machine instructions
must be made—especially important on devices with limited code memory. Care
must be taken to ensure that the time properties of an assembly program are
not modified by assembly lest we affect the semantics of any program employing
the MCS-51’s I/O facilities. This is only possible by inducing a cost model on
the source code from the optimisation strategy and input program.

Resources Our source files are available at http://cerco.cs.unibo.it. We
assumed several properties of ‘library functions’, e.g. modular arithmetic and
datastructure manipulation. We axiomatised various small functions needed to
complete the main theorems, as well as some ‘routine’ proof obligations of the
theorems themselves, in focusing on the main meat of the theorems. We believe
that the proof strategy is sound and that all axioms can be closed, up to minor
bugs that should have local fixes that do not affect the global proof strategy.

The complete development is spread across 29 files with around 20,000 lines of
Matita source. Relevant files are: AssemblyProof.ma, AssemblyProofSplit.ma
and AssemblyProofSplitSplit.ma, consisting of approximately 4500 lines of
Matita source. Numerous other lines of proofs are spread all over the development
because of dependent types and the Russell proof style, which does not allow
one to separate the code from the proofs. The low ratio between source lines
and the number of lines of proof is unusual, but justified by the fact that the
pseudo-assembly and the assembly language share most constructs and large
swathes of the semantics are shared.

http://cerco.cs.unibo.it

	On the correctness of an optimising assembler for the Intel MCS-51 microprocessor

