
Confidential Computing—a brave new world
Dominic P. Mulligan, Gustavo Petri, Nick Spinale, Gareth Stockwell and Hugo J. M. Vincent

Arm Ltd. Cambridge, UK
forename.surname@arm.com

Abstract—The semiconductor industry is witnessing a nascent
security paradigm shift in the rise of Confidential Computing.
Driven by the need to protect computations delegated to co-
tenanted machines operated by Cloud Computing services, main-
stream instruction set architectures are gradually introducing
novel features that can be used to establish protected isolates
offering strong integrity and confidentiality guarantees to code
and data contained within. Coupled with a Remote Attestation
protocol, a third-party may request the launch of an isolate on
an otherwise untrusted machine and know—with a high degree
of assurance—that a payload of code and data was indeed loaded
into a legitimate isolate with a particular configuration.

We argue that this ability to reliably establish a safe “beach-
head” on an untrusted third-party’s machine has far-reaching
consequences with applications beyond protecting workloads
delegated to Cloud Computing services. In a future world where
facilities for Confidential Computing are widely deployed and
used, we imagine a utopia where inadvertent data leakage is
a curiosity of a bygone age, with encrypted data moving from
isolate to isolate and never resting in plaintext. Moreover, data
is only released in explicitly delimited ways for processing, with
systems and individuals exhibiting fine-grained control over data.

We report on recent activities within Arm in attempting to
realize this vision, and hope that this paper acts as a “call to
arms” to others to join with us in fully exploring the potential
of these emerging technologies.

Index Terms—Confidential Computing, Arm® Confidential
Compute Architecture (Arm CCA), Remote Attestation, Ver-
acruz, IceCap

I. INTRODUCTION

By and large, protecting secrets when they are at rest—
stored on disk for example—is a solved problem. Likewise, we
know how to protect secrets in transit, when being communi-
cated device-to-device, using transport-layer security protocols
such as TLS. What we have yet to fully grapple with is how to
efficiently and ergonomically protect secrets when in use—for
instance, how to protect potentially collaborative computations
over secret inputs, or how to protect computations in environ-
ments not under the full control of a single party.

Ordinarily, this knowledge gap would not be a huge problem
if not for a wildly-popular industrial trend: Cloud Computing.
Increasingly, sensitive computations—finance, health, even
computations and data related to national security—are being
deployed on shared pay-per-use infrastructures owned and
operated by Cloud services that are able to leverage economies
of scale and comparative advantage to drive down costs.
While traditional isolation and virtualization technologies (like
hypervisors and OSes) have served us well, the prevalence
of the Cloud has exposed software systems to new security
vulnerabilities and heightened the risk of old ones [1], [2].

Academia and industry have acknowledged this challenge,
and Confidential Computing architectures and platforms have
emerged as a result. Some proposed solutions are based purely
on cryptographic primitives, others rely on strong security and
isolation guarantees through the use of formal methods and
verification [3], [4], and yet others are enabled by hardware-
backed strong isolation mechanisms.

Each offers a trade-off in terms of threat-model, perfor-
mance, maintenance, and usability. We will concentrate on
the latter two for their performance advantages, and re-
main optimistic about cryptographic techniques like Fully
Homomorphic Encryption (FHE) [5], [6] for their future
promise. Note that solutions for first-party (for lack of a better
term) Confidential Compute have existed for over a decade
in the client-device space, represented primarily by Arm’s
TrustZone® [7]. Here, a small collection of trusted vendors
supply privileged services—cryptographic key management,
for example—which needs protecting from malicious or un-
trustworthy software and users. However, driven by the secu-
rity challenges inherent to Cloud and multi-tenant computing,
the semiconductor industry is witnessing a paradigm shift in
security as most major instruction set architectures add sup-
port for third-party Confidential Compute—witness AMD’s
Secure Encrypted Virtualization (SEV), Arm’s TrustZone and
new Confidential Compute Architecture, and Intel’s Soft-
ware Guard Extensions (SGX) and Trust Domain Extensions
(TDX), for example. Whilst each of these technologies is
unique in its own way, we may identify commonalities:

a) Hardware support for isolation against a privileged
attacker: each technology introduces what we shall call iso-
lates, a new kind of architectural primitive—variously called
a Secure Enclave, Trusted Execution Environment, Realm,
Protected Virtual Machine, Trusted Application, amongst other
names, depending on the technology—that provides strong
integrity and confidentiality guarantees to code and data
against a wide class of attackers. Depending on the tech-
nology, this class of attacker may commonly be assumed to
include attackers able to co-opt the capabilities of privileged
system software—such as the operating system, hypervisor,
and BIOS—and potentially even a class of physical attacker
capable of inspecting and manipulating off-chip memory.

b) Small Trusted Computing Base: each technology
places an emphasis on keeping the Trusted Computing Base
(or TCB, henceforth) as minimal as possible, encompassing
only the content of the isolate and any essential hardware or
firmware needed to implement the technology in focus.

forename.surname@arm.com


c) Root of trust, measurement, and Remote Attestation:
most technologies provide a hardware root of trust and Remote
Attestation protocol1 through which a skeptical challenger can
obtain strong, cryptographic evidence that a legitimate isolate
has been initialized on a remote (or local) machine, containing
software with a known hash and configuration parameters.

Taken together, this combination of features allows one to
establish a protected “beach-head” on an untrusted system
with a known good configuration, safe from spying and
interference—exactly what is needed to protect computations
delegated to the Cloud or any other untrusted server.

Many discussions of Confidential Compute naturally fix-
ate on Cloud Computing use-cases. However, there are also
natural applications wherever compute happens, whether that
be on client-devices—mobile phones, smart watches, tablets,
PCs, home assistants, and similar—or on server-class hardware
sitting outside of a traditional Cloud data centre, for example
at the “network edge” or even in supercomputing facilities.
Moreover, Confidential Compute can (and will, in time)
be extended to cover accelerators and other programmable
devices—for example machine learning accelerators, GPUs,
and Smart NICs—by providing strongly-partitioned isolated
execution environments on these devices, and providing as-
sociated attestation mechanisms. The future for Confidential
Compute is bright.

Yet, what we hope to do here is look beyond discussion
of the immediate applications, and extensions, of these new
Confidential Computing technologies. Indeed, in the short
term we see most discussion and potential application of
strong isolation technologies, in both infrastructure- and client-
class devices, as simply moving existing workloads—virtual
machine images, databases, and similar—inside an isolate as a
form of defence in depth. Whilst this is commercially impor-
tant, we are particularly interested in exploring a longer term
(utopian) vision for what the rise of Confidential Compute
could mean for industry and wider society.

II. CONFIDENTIAL COMPUTE: OUR VISION

Imagine a world where strong isolation technology is widely
deployed and used. What could this world look like?

In this world computations can be freely moved from
device to device without a privacy risk, provided the device is
capable of launching an isolate. Computations are “mobile”,
and can be handed-off to devices as an individual moves
around a building, or down the street—scheduled onto devices
with dedicated accelerators, or those sitting idle with spare
computing capacity. Computations on sensitive data can now
be crowd-sourced—medical images are processed en masse
in private grid computing networks, for example. Data is now
released in delimited ways, as mutually mistrusting individ-
uals enroll in collaborative computations which use isolates
as a safe “neutral ground” within which the computation
takes place, essentially delivering on the promise of Secure

1Arm TrustZone as an architecture provides no Remote Attestation, though
deployments could define one, using measured boot and hardware root of trust.

Multiparty Computations.2 Enhanced, pervasive privacy acts
as an economic lubricant as data once deemed too risky
to share is freely released–––in strongly controlled ways.
More generally, data is now pervasively encrypted, and only
temporarily decrypted for use within an isolate, before being
encrypted again for storage—inadvertent data leaks are now a
curiosity of the past, and data sets once deemed too sensitive
to outsource or share given the risk of data leaks are now
moved around freely. The concepts of control and possession
of data are no longer conflated.

Indeed, once the capability of delegating computations
safely to untrusted third-parties is developed, it no longer
really matters, from a privacy point-of-view, where compute
happens. Computations can be scheduled wherever it is most
convenient, and wherever is best placed to carry out the com-
putation. Moreover, isolates can be used as virtual strongboxes,
used to address problems ordinarily deemed within the domain
of cryptographers, albeit in more efficient and ergonomic
ways.

Within Arm, we have initiated a program exploring this
utopian vision through concrete point solutions—exploring
what new ways of collaborating, and working with data,
emerge in a world where strong isolation technologies are
widely deployed. We describe some of our activities in the
remainder, and aside from a précis of our current activity, we
hope this position paper serves as a “call to arms”. Before
doing that, we outline some important cross-cutting aspects
and challenges that we believe will help in realizing our vision.

Reliable hardware and software stacks: Establishing trust
in the hardware and software that underlies strong isolation
technology is a foundational aspect in delivering on the
promises of Confidential Compute.

The means available to underpin and establish trust vary de-
pending on whether we talk about hardware, software, or net-
working protocols and distributed systems. At the lowest level,
in hardware, trust is gained by having reliable root-of-trust
flows that guarantee that systems are booted into known and
valid states, from trusted read-only images (possibly signed
by a known and trusted provider). Moreover, for isolates, the
hardware, in tandem with firmware, must provide services that
enable the measurement and cryptographic authentication of
their initial contents and state.

In the case of software, trust is enabled by source code
which is: i) available and auditable, ii) built into binaries with
bit-exact reproducibility, iii) signed by a trusted party, iv) for-
mally verified, v) equipped with verifiable certificates (e.g. in
the form of a proof witness). These are but a few examples
of practices, ordered by increasing impact on trustworthiness,
that we believe should be adopted as standard in Confidential
Computing’s critical software.

Note that many principles for increasing trust in software
might appear to be applicable to hardware as well, however
there are crucial differences. Underlying them is the capa-

2Despite the great algorithmic progress in recent years, we see Secure
Multiparty Computations as still too slow for common practical application.



bility to reproduce, measure (hash) and compare artifacts;
this enables signatures, and makes auditing of source code
useful—otherwise there is no way to know if what you audited
is manifested in the hardware you are using. At present,
there are no practical ways to measure a physical hardware
implementation to assert that it correctly implements a given
piece of hardware source (e.g. Verilog/RTL code), and indeed
solutions to this problem still seem far fetched (for example,
state of the art nondestructive die imaging requires the use of
a particle accelerator [8]).

Standardized protocols and policies: Some protocols
required for Confidential Computing have been the subject
of study, with multiple extant implementations—notable ex-
amples include remote attestation protocols [9], [10], and
protocols for firmware update and trusted execution environ-
ment setup [11], [12]. However, building distributed systems
using Confidential Computing will often require more than one
participant, with different trust relationships, and with different
risks. It is therefore important to design protocols and policies
to mediate these trust relationships as well as the provenance
and manipulation of data and results. In the best case we would
expect these policies to be attestable as well. Arm’s Veracruz
project, discussed later, incorporates a runtime system and
policy format to establish policies dictating ownership of
software, data, and results of computations. While Veracruz
policies are relatively simple, given the use cases of Veracruz,
we anticipate that this is an important topic of research as
more use-cases for distributed confidential systems emerge.

New use-cases enabled by Confidential Compute: Once
Confidential Compute support becomes ubiquitous across
client and infrastructure devices, it can form the foundation
for new use-cases, building trust in everyday interactions. One
such promising use-case is end-to-end provenance and cryp-
tographic authenticity of images, video and other content in
online news and social media. An isolate could be used at the
point of capture to execute the image signal processing com-
putations and append signature and attestation material to the
resulting image (enabling relying parties to have confidence
that the processing was faithful, without compromising the
privacy of the user). Downstream, journalists and newsroom
editors could run their image or video editing operations in
isolates, again allowing relying parties to understand what
operations were performed. Such a use-case is being developed
and standardized by the Coalition for Content Provenance and
Authenticity (C2PA) [13], where Arm is a member. We hope
that this technology may begin to stem the harmful spread of
misinformation and disinformation in social media.

Realizing the vision outlined above requires changes to
existing computing stacks, starting at the hardware level and
extending to programming languages, libraries, and protocols.
As is typical in security, each element in this stack is subject to
distinct threats, and their composition is only as robust as the
weakest link in the stack. We therefore think that principled
and robust design principles have to be enacted to deliver on
the security promises of Confidential Compute.

III. TOWARDS REALIZING THE VISION

We now describe some point solutions we are working
on in attempting to deliver upon our utopian vision. While
each solution described relates to a specific layer—working
from hardware upwards—we expect that in future each will
contribute toward an end-to-end Confidential Compute stack.

A. Hardware foundations with Arm CCA

The recently-announced Arm Confidential Compute Archi-
tecture (or Arm CCA, henceforth) [14] introduces the Realm
Management Extension (or RME, henceforth), and with it
introduces a form of isolate to the Armv9-A [15] architecture
profile, called a Realm. A Realm is an isolate protected from
privileged—and other non-privileged, but unrelated—software
surrounding it, including the operating system, hypervisor, and
TrustZone firmware. An untrusted operating system manages
the memory and CPU resources of a Realm but cannot access
nor interfere with its content or state.

RME extends the Arm architecture with both a new physical
address space, the Realm physical address space, and a new
execution state called the Realm security state, which are
protected from physical attacks through memory encryption,
and from both untrusted operating systems and applications
running in the Non-secure security state and software running
in the Secure security state of Arm TrustZone, by access
controls. RME also introduces a mechanism for securely
and dynamically partitioning the system’s memory resources
between the Realm and non-Realm address spaces.

Trusted firmware, called the Realm Management Monitor
(or RMM, henceforth), acts as a separation kernel in the
Realm security state and isolates Realms from each other.
The RMM co-operates defensively with an untrusted operating
system, executing in the Non-secure world, to manage opaque
memory and CPU resources of Realms, and can attest to a
Realm’s confidentiality and initial state, providing the founda-
tions for a Remote Attestation mechanism for Realms.

As part of our work towards a reliable and trustworthy
implementation of RME we are using software model checking
techniques to ensure that Arm’s implementation of the RMM
upholds its ABI specification. Moreover, we are utilizing
formal models and methods to study some of the emergent
security guarantees that can be derived from the specification.
For now, we have concentrated on functional correctness, and
coarse-grained notions of confidentiality and integrity.

Note that one peculiarity of Arm’s architecture is that the
RMM and TrustZone firmware are both mutually distrusting,
and while the mechanisms protecting each are similar, they
differ in purpose. The Realm security state is dedicated to
supporting Confidential Compute, wherein Realms distrust the
operating system but are less privileged than the operating
system, and can be dynamically created. The Secure security
state, which hosts TrustZone firmware, is dedicated to support-
ing first-party trusted services which are similarly protected
from the operating system, but, in contrast, trusted by the
operating system—being potentially more privileged than the



operating system itself—and also tend to exist in static “carve
outs” and pre-loaded on devices.

The primitives provided by RME, coupled with the RMM
ABI, are general enough to support a broad range of Arm
platforms and their applications. In the Cloud, the unit of
isolation may be as large as a virtual machine. In this case,
the RMM is used as a blind hypervisor running in the
Non-secure state, which orchestrates, manages, and schedules
virtual machines running in Realms without access to their
state or content. On a client device, resource constraints may
not permit an entire virtual machine for each confidential
component, in which case a Realm may contain just a single
process, or part of a process running in the Non-secure state.

B. Strong isolation on existing platforms with IceCap

Arm CCA is Arm’s Confidential Compute architecture for
Armv9-A platforms, yet billions of Armv8-A powered-devices
will continue to be widely used far into the foreseeable future.
Can we provide a pragmatic Confidential Compute solution
within the limitations of these devices?

IceCap [16] is our open-source project tackling this prob-
lem, supporting a form of isolate on compatible Armv8-A
devices. IceCap is a hypervisor with a minimal, attestable
TCB based on the high-assurance seL4 microkernel [3].
Conceptually similar to the RMM in Arm CCA, the IceCap
hypervisor co-operates defensively with an untrusted operating
system to manage opaque memory and CPU resources of
isolates, with minimal overhead. The extensive security and
functional correctness proofs of seL4 provide a high degree of
assurance that IceCap correctly protects isolates from software
attacks [17], [18], [19]. IceCap works within the limitations
of existing hardware platforms, and does not depend on any
new hardware features introduced by Arm CCA, relying on
memory access controls provided by the Armv8-A Memory
Management Units (MMUs) and System MMUs (SMMUs) to
protect isolates. The IceCap threat model for isolates is weaker
and more variable across hardware platforms than Arm CCA
Realms, especially in the presence of an attacker with physical
access, due to the lack of memory encryption.

C. Deployment and collaboration with Veracruz

Consider the following scenario. Alice and Bob are each
in possession of private data sets and wish to collaborate to
obtain a machine learning model that was trained over their
joint data sets. Neither wishes to divulge their data set to the
other, nor to anybody else for that matter, and the output from
this computation should only be available to Alice and Bob.

Abstracting a little, we observe that a group of data
providers with data sets Di for 1 ≤ i ≤ m and a pro-
gram provider with program π wish to collaborate together
to compute the result π(D1, . . . , Dm). Most generally, each
data provider wishes to keep their data input, Di, a secret,
contributing it to the collaborative computation without di-
vulging it to anybody else (though any principal may choose
to intentionally declassify one of their secrets, perhaps as

a means of inducing another to take part in a collabora-
tive computation). Moreover, once identified, this pattern of
m+1 mutually-distrusting principals computing a joint result
with strong privacy guarantees appears over-and-over again—
further examples include privacy-preserving auctions, polls
and surveys, private graph analytics and set-intersection, and
privacy-preserving sensor fusion, amongst many others.

Veracruz [20], an open-source project adopted by the
Confidential Compute Consortium, captures this pattern, and
uses strong isolation technology—including Arm TrustZone
Trusted Applications, AWS Nitro Enclaves, Intel SGX Secure
Enclaves, seL4/IceCap virtual machines, and soon Arm Con-
fidential Compute Architecture Realms—to provide a neutral
ground within which collaborative computations take place.
Veracruz provides protocols, tools, and importantly a trusted
runtime component that is loaded into an isolate, and which
hosts a computation. Working with the isolate, the runtime
acts as a two-way sandbox, preventing the untrusted host
from spying or interfering, but also limiting the program π to
computing only a pure partial function of its inputs, modulo
the ability to sample random data. Participants provision
secrets into the runtime via TLS after using Remote Attestation
to authenticate the isolate and its Veracruz runtime content.

To abstract over different isolation technologies, we use We-
bAssembly [21] as an executable format, and the WebAssem-
bly System Interface [22] as a programming environment.
Computations are written in familiar programming languages
(including Rust and C) and their standard libraries without
needing to resort to custom tools. Moreover, different attesta-
tion protocols are also abstracted over using a method of proxy
attestation, which sits in front of each “native” attestation
service and exposes the Arm PSA attestation protocol [12].
With this, client code interacting with an isolate need only
understand PSA attestation, not a zoo of different protocols.

Veracruz, strictly speaking, is a framework for designing and
deploying collaborative privacy-preserving computations. Ev-
ery Veracruz computation is parameterized by a public policy
file, capturing the “topology” of a computation—describing
who supplies inputs, programs, and importantly who obtains
results. By varying this policy file, and the program π, a host of
privacy-preserving collaborative computations can be designed
and made to fit a particular set of existing trust relationships.

Veracruz’s platform abstraction also means it is an effective
way of deploying computations across a host of different
isolation technologies, and makes Veracruz a central pillar in
realizing our vision: providing both a means for a group of
mutually mistrusting individuals to collaborate, and a substrate
through which computations can be safely moved around:
write once, isolate anywhere.

IV. GAPS AND OPEN PROBLEMS

We have so-far outlined our vision and some ongoing ef-
forts. We now discuss some open challenges towards realizing
this vision. We don’t intend for this list to be exhaustive;
there are also hard problems to solve in supply chain security,



system-level optimization, developer productivity, and so on,
that we do not have space to address.

A. Unprotected leakage

The leakage of confidential information through side chan-
nels is a common problem for strong isolation technologies.
Whilst hardware plays a crucial role in the extent of leakage,
it cannot address all leakage alone. Computations whose
execution time, data access patterns, and control flow depends
on confidential data will be subject to side channels that are
potentially observable. Unfortunately, almost any program not
specifically written and compiled to avoid side channels will
have secret-dependent control flow or data access patterns.

The threat model is relevant here; most Confidential Com-
puting solutions support cryptographic memory protections
aimed at protecting against an attacker with physical access
and capable of monitoring and manipulating communication
between the main SoC and off-chip memory (e.g. DRAM).
This is typically modelled as either an attacker replacing a
DIMM with a malicious one that can leak or replay data, or
exfiltrate a DIMM for later analysis without losing the volatile
contents (eg. by freezing it); the solution is to encrypt and
perhaps cryptographically integrity-protect DRAM contents.
However, an attacker may also be capable of attaching a fine
grained power monitoring or fault injection apparatus to the
system. There are techniques available to hardware design-
ers to reduce power side channel leakage below practically
observable levels for certain operations, but these require co-
operation with software actuating the hardware.

Even without physical access confidential information can
leak through timing, and designing hardware and software
such that it doesn’t leak secrets through timing is a well-
established discipline in cryptography—the “constant time”
implementation style. Correctly writing constant time software
is widely regarded as difficult even within the cryptography
community, and generally comes at a performance cost. An
interesting area to explore is the combination of novel com-
pilation technology and hardware features to reduce leakage,
to help developers understand leakage, and to make informed
performance/leakage trade-offs. We are encouraged by recent
progress in data-oblivious data structures and algorithms (e.g.
[23]). Relatedly, Oblivious RAM (ORAM) is a known ap-
proach to masking memory access patterns, and hardware-
based ORAMs have been reported (e.g. [24]). Currently, all
such schemes have overheads that are too high to be applied
to all memory [25], but can be applied to smaller regions. Use
of small hardware-enabled ORAMs, to protect critical parts of
programs, is also an interesting area for future work.

B. Behavioural measurement and attestation

Remote attestation, used correctly, enables a relying party to
establish that the software running in an isolate is as expected.
However, it does not enable the relying party to trust the
software, by itself, and must be combined with a separate,
out-of-band establishment of trust in the software—typically
by access to source code, manual audit, reproducible build,

and comparing hashes. Some applications for Confidential
Compute are not conducive to out-of-band trust establishment,
for example because the computation is proprietary or confi-
dential, or because it is bespoke or one-off and the relying
party does not have the resources or expertise to manually
audit the code. The next logical step is to enable a relying
party to establish that isolated software acts in certain ways
they care about, for example that no information flows to
defined outputs exist, or that the program is functionally safe
(i.e. no Heartbleed-style [26] vulnerabilities are present) to
mention but two. Behavioural attestation allows a relying party
to establish trust in behavioural properties of programs while
keeping the programs themselves secret. In the general case,
concrete and practical ways of doing this do not yet exist,
however we are encouraged by recent progress towards similar
goals in the cryptocurrency and smart contracts community
(for instance using Zero-Knowledge Proofs), and hope the next
generation of Confidential Computing systems adopt similar
techniques.

C. Sandboxing and software compartmentalization

Isolates protect their contents from the host system, but
the converse—protecting the host system from the isolate
contents—is not necessarily provided. To facilitate pervasive
usage of strong isolation, this protection is necessary, as an
isolate prevents a host system from using conventional anti-
malware protections to detect viruses, for example.

In Veracruz we use WebAssembly as a sandbox for guest
programs. Because WebAssembly is primarily intended for
running code in a web browser both the specification and
implementations are designed with a high level of robustness.
WebAssembly also has additional advantages as a sandbox,
such as providing program portability and providing a widely
supported compiler target; however it also has a number of
disadvantages, including: i) reduced performance compared to
native code, ii) interpretation and JIT compilation make it very
difficult to write code that avoids side channel leakage (see CT-
Wasm [27] for promising proposals), iii) it currently presents
programs with a single contiguous memory, complicating
common system interface patterns (mmap etc), and iv) it is
not a good compilation target for all languages due to lack of
direct support for arbitrary control flow graphs.

While WebAssembly is currently the right choice for Ver-
acruz, we anticipate interest in other sandboxing approaches,
and especially in sandboxing native code. We are excited
by the potential of CHERI and the Morello project [28]
which both experimentally extends the Arm AArch64 archi-
tecture with CHERI [29], and implements that experimental
architecture in a high performance server-class processor.
CHERI adds a hardware capability system to the instruction
set wherein, with compiler assistance, pointers are replaced
by capabilities—tagged fat pointers carrying metadata such
as bounds and permissions–––allowing a large portion of
common memory safety vulnerabilities, for example buffer
overflows, to be avoided. Empirical historical evidence from
industrial codebases from Microsoft and Google Chromium



[30], [31] suggest about 70% of patched vulnerabilities are
due to memory safety problems; CHERI promises to address
many such vulnerabilities, so the potential dividend is high.

Whilst the Morello project’s experimental processor does
not support Arm CCA, the possibility of hardware combin-
ing CHERI and Confidential Compute support is interesting.
CHERI significantly reduces the number of exploitable vul-
nerabilities present in the isolate software or in the system
TCB, and the hardware capability system can also be used for
efficient and robust sandboxing and compartmentalization of
native code, with access to all ISA features (such as SIMD)
as well as controlled access to other system resources such as
memory mapped accelerators, with appropriate OS support.

D. High-level policies

As mentioned in Section III, Veracruz is parameterized by
a policy, providing all participants with information about the
provenance of data, software, and who will have access to the
results. Whilst sufficient for Veracruz’s use-cases, we antici-
pate that as distributed, and potentially autonomous, systems
at a larger scale utilize Confidential Computing infrastructures,
the coordination and agreement of capabilities, trust relation-
ships, and attestation evidence will become increasingly more
complex. Thus, the design of policy languages, protocols, and
mechanisms for scalable establishment of mutual trust between
independent agents, is required to realize our vision.

E. Next-generation attestation

Remote attestation is a central part of Confidential Compute,
but in its current form it is not perfect. Current protocols only
give the relying party confidence in the initial state of an
isolate, relying on the transitive assumption that known initial
state and known code can only produce expected executions.
In an ideal world, with perfect software in the isolate, this is
a good assumption. However real software inevitably contains
bugs and vulnerabilities, and especially for long running or
interactive computations such as stateful network servers, the
relying party should regard the isolate with less confidence.
It is of course possible to measure (hash) the isolate’s state
during a computation, but it is very hard for a relying party
to interpret those measurements in all but the very simplest
cases. Further work on attestation techniques that offer more
flexibility and higher assurance, especially to long running and
interactive computations, and to isolates that go beyond purely
CPU-bound computations—that is to say, use accelerators or
heterogeneous compute fabrics—is needed. While we partic-
ipate in several efforts towards standardization of attestation
protocols and implementation of attestation infrastructure [10],
[12], we believe this is still an open problem.

F. End-to-end verification

The security posture of Confidential Compute demands
high-quality assurances for hardware, software and commu-
nication protocols. While the formal methods community has
made great progress in verifying complex and critical systems
(see [3], [4], [32], [33] for a few examples), we believe

that a full end-to-end application of formal methods to a
Confidential Compute stack cannot be expected in a short-
to-mid term. However, we believe that wherever practical,
existing techniques should be used in lieu of future tools that
will extend strong guarantees across layers of the stack—the
inability to have a completely verified system should not be
an excuse for not verifying as much as is possible.

G. Cryptographic Confidential Compute

With future efficiency improvements, cryptographic ap-
proaches to Confidential Compute—Fully Homomorphic En-
cryption (FHE) and Secure Multi-Party Computations (MPC),
for example—will inevitably become attractive. The DARPA
Data Protection in Virtual Environments (DPRIVE) program
aims to improve performance of FHE using large scale hard-
ware acceleration to within one order of magnitude of the
performance of running the computation unprotected [34]; that
is, the program aims to accelerate FHE computations by five
orders of magnitude or more. FHE and MPC also restrict
the computational model in various algorithm-dependent ways,
making it more or less applicable to different computations.
But, assuming such improvements are successful, further de-
velopment and commercialization of hardware accelerators
and algorithms may enable FHE to eventually displace isolate-
based Confidential Compute in many applications. Crypto-
graphic Confidential Compute is, in principle, desirable since
it eliminates the need for trusting hardware, performing attes-
tation or (in some cases) addressing side channels, reducing
security arguments to purely cryptographic ones. Even with
today’s performance, FHE and MPC are starting to find ap-
plication today, especially where the computation is small and
the number of participants is high, such as aggregating survey
results or attributing online advertising spend. In such cases,
multiple attestations, isolate set up and teardown, and other
overheads can make cryptographic approaches performance
competitive with today’s notions of Confidential Compute.

V. CONCLUSIONS

Arm has taken a number of small steps toward realizing
the vision outlined in Section II, for example by introducing a
new architecture for Confidential Compute, called Arm CCA.
Building on top of, and alongside Arm CCA and other related
isolation and security technologies, we are investigating new
ways of protecting computation wherever it happens, poten-
tially in collaborative settings between mutually distrustful
parties, with projects such as IceCap and Veracruz.

With this position paper, we hope to show that emerging
technologies like Arm CCA are more than mechanisms for
protecting existing workloads but represent interesting new
primitive building blocks through which new ways of con-
trolling data, on a fine-grained basis, can be built.

Responsible use of these new primitives will, we hope,
significantly improve privacy and security, enable a next
generation of trustworthy, respectful systems and services, and
perhaps even begin to tackle some of the social and political
problems caused by insecurity and inauthenticity online.



REFERENCES

[1] T. Anderson – The Register, “Hyper-V bug that could crash ’big portions
of Azure cloud infrastructure’: Code published,” https://www.theregister.
com/2021/06/02/hyperv bug that until recently/, 2021.

[2] Xen Security Advisory, “Improper MSR range used for x2APIC emu-
lation,” http://xenbits.xen.org/xsa/advisory-108.html, 2021.

[3] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 207–220. [Online]. Available:
https://doi.org/10.1145/1629575.1629596

[4] R. Gu, Z. Shao, H. Chen, J. Kim, J. Koenig, X. N. Wu, V. Sjöberg,
and D. Costanzo, “Building certified concurrent os kernels,” Commun.
ACM, vol. 62, no. 10, p. 89–99, Sep. 2019.

[5] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, 2009, pp. 169–178. [Online]. Available: https://www.cs.
cmu.edu/∼odonnell/hits09/gentry-homomorphic-encryption.pdf

[6] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, 2009. [Online]. Available: https://crypto.stanford.edu/craig/
craig-thesis.pdf

[7] Arm Ltd., “Arm TrustZone Technology,” https://developer.arm.com/
ip-products/security-ip/trustzone, 2021.

[8] M. Holler, M. Odstrcil, M. Guizar-Sicairos, M. Lebugle, E. Müller,
S. Finizio, G. Tinti, C. David, J. Zusman, W. Unglaub, O. Bunk,
J. Raabe, A. F. J. Levi, and G. Aeppli, “Three-dimensional imaging
of integrated circuits with macro- to nanoscale zoom,” Nature
Electronics, vol. 2, no. 10, pp. 464–470, 2019. [Online]. Available:
https://doi.org/10.1038/s41928-019-0309-z

[9] Intel, “Attestation service for Intel® Software Guard Extensions
(Intel® SGX),” https://software.intel.com/content/www/us/en/develop/
download/intel-sgx-intel-epid-provisioning-and-attestation-services.
html.

[10] Arm Ltd., “Project VERAISON: VERificAtIon of atteStatiON,” https:
//github.com/veraison/veraison, 2021.

[11] Brendan Moran, Hannes Tschofenig, David Brown, Milosch Meriac, “A
Firmware Update Architecture for Internet of Things – IETF Draft 24
April 2021,” https://tools.ietf.org/id/draft-ietf-suit-architecture-14.html,
2021.

[12] H. Tschofenig, S. Frost, M. Brossard, A. Shaw, and T. Fossati, “Arm’s
Platform Security Architecture (PSA) Attestation Token – IETF Draft 24
March 2021,” https://tools.ietf.org/id/draft-tschofenig-rats-psa-token-00.
html, 2021.

[13] C2PA, “Coalition for Content Provenance and Authenticity,” https:
//c2pa.org, 2021.

[14] Arm Ltd., “Arm Confidential Compute Architecture,”
https://developer.arm.com/architectures/architecture-security-features/
confidential-computing, 2021.

[15] Arm Ltd., “Arm’s solution to the future needs of AI, security and spe-
cialized computing is v9,” https://www.arm.com/company/news/2021/
03/arms-answer-to-the-future-of-ai-armv9-architecture, 2021.

[16] Arm Ltd., “IceCap: Trustworthy virtualization based on seL4, the
formally verified microkernel,” https://gitlab.com/arm-research/security/
icecap/icecap/, 2021.

[17] T. Sewell, S. Winwood, P. Gammie, T. C. Murray, J. Andronick, and
G. Klein, “sel4 enforces integrity,” in Interactive Theorem Proving
- Second International Conference, ITP 2011, Berg en Dal, The
Netherlands, August 22-25, 2011. Proceedings, 2011, pp. 325–340.
[Online]. Available: https://doi.org/10.1007/978-3-642-22863-6 24

[18] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein,
“Noninterference for operating system kernels,” in Certified Programs
and Proofs - Second International Conference, CPP 2012, Kyoto,
Japan, December 13-15, 2012. Proceedings, 2012, pp. 126–142.
[Online]. Available: https://doi.org/10.1007/978-3-642-35308-6 12

[19] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein, “sel4: From general
purpose to a proof of information flow enforcement,” in 2013
IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA,
USA, May 19-22, 2013, 2013, pp. 415–429. [Online]. Available:
https://doi.org/10.1109/SP.2013.35

[20] Confidential Computing Consortium – Arm Ltd., “Veracruz: privacy-
preserving collaborative compute,” https://github.com/veracruz-project/
veracruz, 2021.

[21] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the
web up to speed with webassembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, A. Cohen and M. T. Vechev, Eds. ACM,
2017, pp. 185–200.

[22] The WebAssembly working group, “The WebAssembly system interface
(WASI),” https://wasi.dev, 2021.

[23] V. Ramachandran and E. Shi, “Data oblivious algorithms for
multicores,” in SPAA ’21: 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021,
K. Agrawal and Y. Azar, Eds. ACM, 2021, pp. 373–384. [Online].
Available: https://doi.org/10.1145/3409964.3461783

[24] C. W. Fletcher, L. Ren, A. Kwon, M. v. Dijk, E. Stefanov, D. Serpanos,
and S. Devadas, “A low-latency, low-area hardware oblivious ram
controller,” in 2015 IEEE 23rd Annual International Symposium on
Field-Programmable Custom Computing Machines, 2015, pp. 215–222.

[25] G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, and
E. Shi, “Optorama: Optimal oblivious ram,” Cryptology ePrint Archive,
Report 2018/892, 2018, https://eprint.iacr.org/2018/892.

[26] F. Schwartzenburg, W. Oates, J. Park, D. Johnson, M. Stutzman, M. Bai-
ley, and S. Youngblood, “Verification, validation, and accreditation
(vv&a): one voice — unified, common & cross-cutting,” in Proceedings
of the 2007 Summer Computer Simulation Conference, SCSC 2007, San
Diego, California, USA, July 16-19, 2007, G. A. Wainer, Ed. Simulation
Councils, Inc., 2007, pp. 429–436.

[27] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-Wasm:
type-driven secure cryptography for the web ecosystem,” Proceedings
of the ACM on Programming Languages, vol. 3, no. POPL, p. 1–29,
Jan 2019. [Online]. Available: http://dx.doi.org/10.1145/3290390

[28] Arm Ltd., “Morello – Arm Developer,” https://developer.arm.com/
architectures/cpu-architecture/a-profile/morello, 2021.

[29] R. N. M. Watson, P. G. Neumann, et al., “UCAM-CL-TR-951: Ca-
pability hardware enhanced RISC instructions: CHERI instruction-
set architecture (version 8),” https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-951.pdf, University of Cambridge Computer Labora-
tory, Tech. Rep., 2020.

[30] MSRC Team, Microsoft Inc., “A proactive approach to
more secure code,” https://msrc-blog.microsoft.com/2019/07/16/
a-proactive-approach-to-more-secure-code/, 2019.

[31] Google Inc., “Memory safety - The Chromium Projects,” https://www.
chromium.org/Home/chromium-security/memory-safety, 2021.

[32] M. Polubelova, K. Bhargavan, J. Protzenko, B. Beurdouche,
A. Fromherz, N. Kulatova, and S. Z. Béguelin, “Haclxn: Verified
generic SIMD crypto (for all your favourite platforms),” in CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, J. Ligatti, X. Ou,
J. Katz, and G. Vigna, Eds. ACM, 2020, pp. 899–918. [Online].
Available: https://doi.org/10.1145/3372297.3423352

[33] S. Li, X. Li, R. Gu, J. Nieh, and J. Hui, “A secure and formally verified
linux kvm hypervisor,” in 2021 2021 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, may
2021, pp. 1782–1799.

[34] DARPA, “Data Protection in Virtual Environments (DPRIVE),” https://
www.darpa.mil/program/data-protection-in-virtual-environments, 2020.

https://www.theregister.com/2021/06/02/hyperv_bug_that_until_recently/
https://www.theregister.com/2021/06/02/hyperv_bug_that_until_recently/
http://xenbits.xen.org/xsa/advisory-108.html
https://doi.org/10.1145/1629575.1629596
https://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-encryption.pdf
https://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-encryption.pdf
https://crypto.stanford.edu/craig/craig-thesis.pdf
https://crypto.stanford.edu/craig/craig-thesis.pdf
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://doi.org/10.1038/s41928-019-0309-z
https://software.intel.com/content/www/us/en/develop/download/intel-sgx-intel-epid-provisioning-and-attestation-services.html
https://software.intel.com/content/www/us/en/develop/download/intel-sgx-intel-epid-provisioning-and-attestation-services.html
https://software.intel.com/content/www/us/en/develop/download/intel-sgx-intel-epid-provisioning-and-attestation-services.html
https://github.com/veraison/veraison
https://github.com/veraison/veraison
https://tools.ietf.org/id/draft-ietf-suit-architecture-14.html
https://tools.ietf.org/id/draft-tschofenig-rats-psa-token-00.html
https://tools.ietf.org/id/draft-tschofenig-rats-psa-token-00.html
https://c2pa.org
https://c2pa.org
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
https://gitlab.com/arm-research/security/icecap/icecap/
https://gitlab.com/arm-research/security/icecap/icecap/
https://doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1007/978-3-642-35308-6_12
https://doi.org/10.1109/SP.2013.35
https://github.com/veracruz-project/veracruz
https://github.com/veracruz-project/veracruz
https://wasi.dev
https://doi.org/10.1145/3409964.3461783
https://eprint.iacr.org/2018/892
http://dx.doi.org/10.1145/3290390
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1145/3372297.3423352
https://www.darpa.mil/program/data-protection-in-virtual-environments
https://www.darpa.mil/program/data-protection-in-virtual-environments

	Introduction
	Confidential Compute: our vision
	Towards realizing the vision
	Hardware foundations with Arm CCA
	Strong isolation on existing platforms with IceCap
	Deployment and collaboration with Veracruz

	Gaps and open problems
	Unprotected leakage
	Behavioural measurement and attestation
	Sandboxing and software compartmentalization
	High-level policies
	Next-generation attestation
	End-to-end verification
	Cryptographic Confidential Compute

	Conclusions
	References

