
Programming and proving with classical types

Cristina Matache, Victor B. F. Gomes, and Dominic P. Mulligan

Computer Laboratory, University of Cambridge

Abstract The propositions-as-types correspondence is ordinarily presen-
ted as linking the metatheory of typed λ-calculi and the proof theory
of intuitionistic logic. Griffin observed that this correspondence could
be extended to classical logic through the use of control operators. This
observation set off a flurry of further research, leading to the development
of Parigot’s λµ-calculus. In this work, we use the λµ-calculus as the
foundation for a system of proof terms for classical first-order logic. In
particular, we define an extended call-by-value λµ-calculus with a type
system in correspondence with full classical logic. We extend the language
with polymorphic types, add a host of data types in ‘direct style’, and
prove several metatheoretical properties. All of our proofs and definitions
are mechanised in Isabelle/HOL, and we automatically obtain an inter-
preter for a system of proof terms cum programming language—called
µML—using Isabelle’s code generation mechanism. Atop our proof terms,
we build a prototype LCF-style interactive theorem prover—called µTP—
for classical first-order logic, capable of synthesising µML programs from
completed tactic-driven proofs. We present example closed µML programs
with classical tautologies for types, including some inexpressible as closed
programs in the original λµ-calculus, and some example tactic-driven
µTP proofs of classical tautologies.

1 Introduction

Propositions are types; λ-terms encode derivations; β-reduction and proof norm-
alisation coincide. These three points are the crux of the propositions-as-types
correspondence—a product of mid-20th century mathematical logic—connecting
the proof theory of intuitionistic propositional logic and the metatheory of the
simply-typed λ-calculus. As the core ideas underpinning the correspondence
gradually crystallised, logicians and computer scientists expanded the corres-
pondence in new directions, providing a series of intellectual bridges between
mainstream mathematical logic and theoretical computer science.

Yet, for the longest time, the connection between logic and computation
exposed by the propositions-as-types correspondence was thought to be specific
to intuitionistic logics. These logics stand in contrast to the classical logic typically
used and understood by mainstream mathematicians. Indeed, prior to the early
1990s any extension of the correspondence connecting typed λ-calculi with classical
logic was by-and-large considered inconceivable: classical proofs simply did not
contain any ‘computational content’. Many were therefore surprised when Griffin
discovered that control operators—of the same family as the call/cc made

infamous by the Scheme programming language—were the technology required
to extend the propositions-as-types correspondence to classical logic [Gri90].
Classical proofs do contain ‘computational content’ after all.

Griffin’s publication set off a flurry of further research into classical computa-
tion (see for example [Par92, Par93a, Par93b, BB94, dG94b, dG94a, RS94, dG95,
BB95, Par97, BHS97, BBS97, dG98, Bie98, dG01, AH03, AHS04], amongst many
others). Soon, refinements of his original idea were developed, most prominently
in Parigot’s λµ-calculus [Par92], which provided a smoother correspondence
between classical logic and computation than Griffin’s original presentation and
now acts as a nexus for further research into classical computation. Griffin took
Felleisen’s C operator [FFKD87] as a primitive and assigned it the classical type
¬¬A→ A, finding it neccessary to impose restrictions on the reduction relation
of his calculus. Parigot observed that this latter requirement was a side effect
of the single-conclusion Natural Deduction system Griffin used as the basis for
his typing relation, and by using a deduction system with multiple conclusions
instead, one could engineer a classically-typed calculus that enjoyed the usual
confluence and preservation properties whilst imposing fewer a priori constraints
on the reduction strategy. Expressions can be explicitly named with µ-variables
to form commands. This, coupled with a new binding form, allows control flow
to ‘jump’ in a similar spirit to exceptions and their handling mechanisms in
mainstream programming languages.

In this work, we we explore what a theorem-prover based on classical type
theory may look like, and propose to using terms of the λµ-calculus as a seri-
alisation, or proof term, mechanism for such a system. As a first step, we focus
on classical (first-order) logic. In systems based on intuitionistic type-theory, e.g.
Coq [HH14] and Matita [ARCT11], one is able to extract a proof term from
a completed proof. Aside from their use in facilitating computation within the
logic, these proof terms have a number of important purposes:

1. Proof terms are independently verifiable pieces of evidence that the respective
theorem proving system correctly certified that a goal is indeed a theorem.
Proof terms can be checked by an auditing tool, implemented independently
of the system kernel, which is able to certify that the proof term in hand
indeed represents a valid proof. Accordingly, proof terms in theorem proving
systems such as Coq and Matita form an important component of the trust
story for the respective systems, with this idea of an independent checking
tool sometimes referred to as the De Bruijn criterion [BW05].

2. Proof terms may act as a bridge between independent theorem proving
systems. Early versions of Matita maintained proof-term compatibility with
contemporaneous versions of Coq. As a result, the Matita system was able to
import theorems proved in Coq, and use and compute with them as ordinarily
as if they had been proved within the Matita system itself.

3. Proof terms can facilitate proof transformations, and refactorings. By affecting
program transformations at the level of proof terms, one automatically obtains
a notion of proof transformation.

4. Proof terms are used to extract the ‘computational content’ of proofs, which
has important applications in computer science (e.g. in extracting verified soft-
ware from mechanised proofs), and in mathematical logic (e.g. in explorations
of the Curry-Howard correspondence, and in realisability theory [Kri16]).

Given the existence of Parigot’s λµ-calculus, including typed variants, we may
expect to be able to use λµ-terms directly to serialise derivations. However, there
are two snags: the issue of data types—which theorem proving systems must
support in order to permit the verification of interesting programs—and the
necessary use of open terms to encode classical tautologies in Parigot’s calculus,
a more subtle problem which will be explained below.

Addressing first the issue of data types, Parigot explored data type embed-
dings in his early papers on the λµ-calculus (see e.g. [Par92, Section 3.5]). In
particular, in systems of typed λ-calculi based on intuitionistic logic, one typically
observes a uniqueness (or canonicity) result when embedding data types into
the language, a property inherited from intuitionistic Natural Deduction where
theorems possess a unique cut-free proof. This property fails in the classical set-
ting, as classical Natural Deduction does not possess a corresponding uniqueness
property, and ‘junk’ numbers inhabit the usual type of Church-encoded natural
numbers as a result. Instead, one can introduce ‘selection functions’ that pick
out the unique intuitionistic inhabitant of a type from the sea of alternatives—a
strategy Parigot followed. After Parigot, several others considered classical calculi
extended with data. One popular approach has been to consider CPS translations
of types—as in [Mur91, CP11, BU02]—as opposed to introducing data types
and their operational semantics into a calculus in ‘direct style’, or imposing
various conditions on the arguments of primitive recursive functions added to
the calculus—as in [RS94]. Indeed, it is not until the work of Ong and Stewart
working in a call-by-value setting [OS97], and later Geuvers et al. working in a
call-by-name setting [GKM13], that calculi with data types and an operational
semantics in ‘direct style’ are presented. In the latter work, the λµ-calculus is
augmented with an encoding of the natural numbers, along with a primitive
recursor for defining recursive functions over the naturals, in the style of Gödel’s
System T [Göd58] to obtain the λµT-calculus. Doing this whilst maintaining de-
sirable metatheoretical properties—such as preservation and normalisation—is a
delicate process, and requires balancing a mostly call-by-name reduction strategy
with the necessarily strict reduction needed to obtain the normal form property
for natural number data.

So, rather than the λµ-calculus, we take the λµT-calculus as our starting
point for a system of proof terms—with a caveat. As Ariola and Herbelin [AH03]
noted, and as we alluded to previously, the closed typeable terms of the λµ-
calculus (and by extension, the λµT-calculus) correspond to a restricted variant of
classical logic: ‘minimal classical logic’. This logic validates some familiar classical
tautologies but not others: the Double Negation Elimination law cannot be
captured as a closed, typed program in either calculus, and requires a term with
free µ-variables, for example. As working with terms with free variables restricts
program transformations and refactoring, this is undesirable from a programming

and theorem-proving perspective. We therefore follow Ariola and Herbelin in
presenting a calculus with a distinguished µ-constant (called ‘top’) that can be
substituted but not bound by a µ-abstraction. Following our earlier exception
analogy, this ‘top’ element corresponds to an uncatchable exception that bubbles
up through a program before eventually aborting a program’s execution. In this
way, familiar classical tautologies and their derivations can be captured as closed
programs in our language.

Our system of proof terms is therefore a combination of λµT and the terms
of Ariola and Herbelin’s calculus. Yet, we must proceed with caution! Adding
classical constructs to programming languages and calculi has a fraught history:
extending Standard ML with a call/cc combinator inadvertently made the
language’s type system unsound, for example [HL91]. This problem is especially
acute as we propose to build a theorem proving system around our terms, and
therefore must be sure that our typing system is sound, and reduction well-
behaved. We therefore provide a mechanised proof of correctness of the soundness
of our proof terms. In particular, our contributions in this work are as follows:

1. We provide an Isabelle/HOL [Gor91] implementation of Parigot’s λµ-calculus,
along with mechanised proofs of important metatheoretical results. As al-
ways, the treatment of name binding is delicate, especially in a calculus
with two binding forms with very different runtime behaviour. We use De
Bruijn indices [dB72] to handle α-equivalence for λ- and µ-bound variables.
This contribution is not discussed in this paper any further, since the next
contribution subsumes it. All results can be found in our public repository,
mentioned below, and in the Archive of Formal Proofs [MGM17].

2. We extend the calculus above to obtain an explicitly-polymorphic call-by-
value1 variant of the λµ-calculus, à la System F [Gir71], mechanised in
Isabelle/HOL, along with proofs of desired results. This adds yet another
new variety of De Bruijn index for universally quantified type variables. This
is presented in Section 2.

3. Extending further, we blend previous work on type systems for full classical
logic and work extending Parigot’s calculus with data to obtain a typed
λµ-calculus with primitive datatypes and a type system corresponding to full
first-order classical logic. We provide proofs of progress and type preservation
for the reduction relation of this language. This is presented in Section 3.

4. Using our formalisation, we obtain an interpreter for a prototype call-by-
value programming language, which we call µML, using Isabelle/HOL’s code
generation mechanism and a hand-written parser. We show a closed program
whose type is an instance of the Double Negation Elimination law, which
is not typeable in the λµ-calculus. The progress and preservation theorems
presented in Section 3 ensure that ‘well-typed programs do not go wrong’

1 Strictly speaking, our evaluation strategy is a call-by-weak-head-normal-form. A
pure call-by-value λµ-calculus could get stuck when evaluating an application whose
argument is a µ-abstraction, which is undesirable. We retain the terminology call-by-
value since it gives a better intuition of the desired behaviour.

at runtime, and that our proof terms are therefore well-behaved. This is
presented in Section 4.

5. We have built a prototype LCF-style theorem prover called µTP for first-
order classical logic around our proof terms. Our theorem prover is able
to synthesise µML programs directly from complete tactic-driven proofs in
the logic. This theorem prover, as well as example tactic-driven proofs and
synthesised programs, is described in Section 5.

All of our proofs are mechanically checked and along with the source code of
our LCF kernel are available from a public Bitbucket repository.2

2 A polymorphic call-by-value λµ-calculus

Fix three disjoint countably infinite sets of λ-variables, µ-variables and Λ-variables
(type variables). We use x, y, z, and so on, to range over λ-variables; α, β, γ, and
so on, to range over µ-variables; and a, b, c, and so on, to range over Λ-variables.
We then mutually define terms, commands (or named terms) and types of the
λµ-calculus with the following grammar:

s, t ::= x | λx : τ. t | t s | Λa. t | t τ | µα : τ. c

c ::= [α]t

σ, τ ::= a | ∀a. τ | σ → τ

The variables x, α and a are said to be bound in the term λx : τ. t, µα : τ. c
and Λa. t respectively. As usual, we work modulo α-equivalence, and write fv(t),
fcv(t) and ftv(t) for the set of free λ, µ and Λ-variables in a term t. These are
defined recursively on the structure of t. We call a term t λ-closed whenever
fv(t) = {}, µ-closed whenever fcv(t) = {}, Λ-closed whenever fcv(t) = {} and
a term t is simply closed whenever it is λ-closed, µ-closed and Λ-closed.

The implementation of terms, commands, and types in Isabelle as HOL
data types is straightforward—though terms and commands must be mutually
recursively defined. To deal with α-equivalence, we use De Bruijn’s nameless
representation [dB72] wherein each bound variable is represented by a natural
number, its index, that denotes the number of binders that must be traversed to
arrive at the one that binds the given variable. Each free variable has an index
that points into the top-level context, not enclosed in any abstractions. Under
this scheme, if a free variable occurs under n abstractions, its index is at least n.
For example, if the index of the free variable x is 3 in the top-level context, the
λ-term λy.λz.((z y) x) is represented in De Bruijn notation as λ.λ.((0 1) 5).

In the polymorphic λµ-calculus, there are three distinct binding forms, and
therefore we have three disjoint sets of indices. Henceforth, a λ-abstraction is
written as λ : τ. t where τ is a type annotation and the name of the bound
variable is no longer specified. Similarly for µ-abstractions. Universal types and
type variable abstractions are simply written as ∀τ and Λt, respectively.

2 See: https://bitbucket.org/Cristina_Matache/prog-classical-types

https://bitbucket.org/Cristina_Matache/prog-classical-types

Γ (x) = τ

Γ ;∆ ` x : τ

Γ 〈0 : σ〉;∆ ` t : τ

Γ ;∆ ` λ : σ. t : σ → τ

Γ ;∆ ` t : σ → τ Γ ;∆ ` s : σ

Γ ;∆ ` t s : τ

↑0Λ (Γ); ↑0Λ (∆) ` t : τ

Γ ;∆ ` Λt : ∀τ
Γ ;∆ ` t : ∀τ

Γ ;∆ ` t σ : τ [0 := σ]

Γ ;∆〈0 : τ〉 `C c

Γ ;∆ ` µ : τ. c : τ

Γ ;∆ ` t : τ ∆(α) = τ

Γ ;∆ `C [α]t

Figure 1. The rules for typing judgements in the polymorphic λµ-calculus.

Capture-avoiding substitution. The polymorphic λµ-calculus has four differ-
ent substitution actions: a logical substitution used to implement ordinary β-
reduction, a structural substitution used to handle substitution of µ-variables,
and two substitutions for types, one into terms, and one into other types.

Write ↑nλ (t) and ↑nµ (t) for the De Bruijn lifting (or shifting) functions for λ-
and µ-variables, respectively. These increment the indices of all free λ-variables
(respectively µ-variables) in term t that are greater or equal to the parameter
n. An analogous pair of operations, the De Bruijn dropping (or down-shifting),
written ↓nλ (t) and ↓nµ (t), decrement indices that are strictly greater than n. Using
the lifting functions, we define logical substitution recursively on the structure of
terms, and write t[x := s] for the term t with all free occurrences of x replaced
by s in a capture-avoiding manner. We draw attention to two cases: λ and µ-
abstractions. When a substitution is pushed under a λ-abstraction (respectively,
a µ-abstraction), the indices of the free λ-variables in s are shifted by 1 so that
they keep referring to the same variables as in the previous context:

(λ : τ. t)[x := s] = λ : τ. (t[x+ 1 := ↑0λ (s)])

(µ : τ. c)[x := s] = µ : τ. (c[x := ↑0µ (s)])

Note here that in the first clause above, the λ-variable x is pushed through a
λ-abstraction, and must therefore be incremented, whilst in the second clause
the λ-variable x is being pushed through a µ-abstraction, and therefore does not
need to be incremented as there is no risk of capture.

We can also define de Bruijn lifting functions for free Λ-variables in terms,
↑nΛ (t), and types, ↑nΛ (τ). Using these functions, define substitution of type τ for
all free occurrences of type variable a in term t, t[a := τ], or in type σ, σ[a := τ].
Two interesting cases in these definitions are for Λ-abstractions and ∀-types:

(Λt)[a := τ] = Λ(t[(a+ 1) := ↑0Λ (τ)])

(∀σ)[a := τ] = ∀(σ[(a+ 1) := ↑0Λ (τ)])

When substituting inside these binders, the index a and the indices of the free
type variables in τ must be incremented.

Typing judgement. We implement typing environments as (total) functions from
natural numbers to types, following the approach of Stefan Berghofer in his

formalisation of the simply typed λ-calculus in the Isabelle/HOL library. An
empty typing environment may be represented by an arbitrary function of the
correct type as it will never be queried when a typing judgement is valid. We
split typing environments, dedicating one environment to λ-variables and another
to µ-variables, and use Γ and ∆ to range over the former and latter, respectively.
Consequently, our typing judgement for terms is a four-part relation, Γ ;∆ ` t : σ,
between two typing contexts, a term, and a type.

We write ‘Γ ;∆ ` t : σ’, or say that ‘Γ ;∆ ` t : σ is derivable’, to assert that a
complete derivation tree rooted at Γ ;∆ ` t : σ and constructed using the rules
presented in Figure 1 exists. If Γ ;∆ ` t : σ, we say that t is typeable in Γ and ∆
with type σ. We implement the typing judgement as a pair of mutually recursive
inductive predicates in Isabelle—one for terms and one for commands. We write
↑nΛ (Γ) and ↑nΛ (∆) for the extension of the lifting operations to environments.

Note that care must be taken in the treatment of free variables in the imple-
mentation of our typing judgement. In particular, a free variable is represented
by its top-level index, and this index must be incremented by 1 for each λ-binder
above the variable. For example, consider the judgement Γ,∆ ` λ : τ. (3 0) : τ → δ
which states that under the typing environments Γ and ∆ the term λ : τ. (3 0)
has type τ → δ—the free variable 3 is actually represented by 2 in Γ , that is,
Γ 2 = τ → δ. To make sure that the typing environment is kept in a consistent
state, the operation to add a new binding to the environment Γ 〈0 : τ〉 (respect-
ively, ∆〈0 : τ〉) is a shifting operation. Here, the value of Γ at 0 is now τ , and all
other variables that were previously in the environment are shifted up by one,
and if 2 was associated with τ → δ, 3 is instead associated with this type after
shifting. This shifting operation is defined as:

Γ 〈i : a〉 = λj. if j < i then Γ j else if j = i then a else Γ (j − 1).

and possesses the useful property Γ 〈n : τ〉〈0 : δ〉 = Γ 〈0 : δ〉〈n + 1 : τ〉. This
equation is used extensively in our formalisation to rearrange typing contexts.

Important properties of the typing relation may be established by straightfor-
ward inductions on derivations in Isabelle. For example:

Theorem 1 (Unicity of typing). A closed term has at most one type.

It is also the case that the De Brujin lifting functions preserve a term’s typing:

Lemma 1. If Γ ;∆ ` t : τ , then

1. Γ 〈x : δ〉;∆ ` ↑xλ (t) : τ
2. Γ ;∆〈α : δ〉 ` ↑αµ (t) : τ
3. ↑aΛ (Γ); ↑aΛ (∆) ` ↑aΛ (t) : ↑aΛ (τ)

As a corollary, we obtain a proof that logical substitution preserves a term’s
typing, which is established by induction on the derivation of Γ 〈x : δ〉;∆ ` t : τ :

Lemma 2. If Γ 〈x : δ〉;∆ ` t : τ and Γ ;∆ ` s : δ then Γ ;∆ ` t[x := s] : τ .

Similarly, type substitution preserves a term’s typing:

Lemma 3. If ↑aΛ (Γ); ↑aΛ (∆) ` t : σ then Γ ;∆ ` t[a := τ] : σ[a := τ]

Structural substitution. Defining structural substitution is more involved. We
follow [GKM13] in defining a generalised version of Parigot’s structural substi-
tution with the help of contexts, and develop some associated machinery before
defining substitution proper. This generalised version of structural substitution
is particularly useful when considering extensions of the calculus, which we will
discuss later in the paper. First, we define contexts with the following grammar:

E ::= � | E t | E τ

Intuitively, a context is either a ‘hole’ in a term denoted by �, which can be
filled by an associated instantiation, or a context applied to a fixed term—i.e.
‘holes’ are either at the top-level of a term, or on the left, in application position,
applied to a series of fixed arguments. Note that contexts are linear, in the sense
that only one hole appears in a context.

We write E[t] for the term obtained by instantiating the hole in E with
the term t. Naturally, we may wonder when instantiating the hole in a context
is type-preserving. To assess this, we define a typing judgement for contexts
Γ ;∆ ` E : δ ⇐ τ which indicates that the term E[t] has type δ whenever
Γ ;∆ ` t : τ . The definition of this relation is straightforward—and again is easily
implemented in Isabelle as an inductive relation—so we elide the definition here.
We can characterise the behaviour of this relation with the following lemma,
which shows that the relation Γ ;∆ ` E : δ ⇐ τ is correct:

Lemma 4. Γ ;∆ ` E[t] : δ if and only if Γ ;∆ ` E : δ ⇐ τ and Γ ;∆ ` t : τ for
some type τ .

The result follows by induction on the structure of E in one direction, and an
induction on the derivation of Γ ;∆ ` E : δ ⇐ τ in the other.

De Bruijn shifting operations can be lifted to contexts in the obvious way,
commuting with the structure of contexts, lifting individual fixed terms and
evaporating on holes. We write ↑xλ (E), ↑αµ (E) and ↑aΛ (E) for the extension
of the shifting of a λ, a µ and a Λ-variable, respectively, to contexts. These
operations preserve a context’s typing, in the following sense:

Lemma 5. 1. If Γ ;∆ ` E : σ ⇐ ρ then Γ 〈x : δ〉;∆ ` ↑xλ (E) : σ ⇐ ρ
2. If Γ ;∆ ` E : σ ⇐ ρ then Γ ;∆〈α : δ〉 ` ↑αµ (E) : σ ⇐ ρ
3. If Γ ;∆ ` E : σ ⇐ ρ then ↑aΛ (Γ); ↑aΛ (∆) ` ↑aΛ (E) : ↑aΛ (σ)⇐ ↑aΛ (ρ)

The proof is by induction on the derivation of Γ ;∆ ` E : σ ⇐ ρ, using Lemma 1.
With the extension of shifting to contexts, we may now define a generalised

form of structural substitution. We write t[α := βE] for the substitution action
which recursively replaces commands of the form [α]s in t by [β]E[s[α := βE]]
whenever α is free. Figure 2 provides defining clauses for only the most complex
cases. Here, the case split in the last equation is needed to ensure that typing
will be preserved under structural substitution.

We now provide an informal explanation of the final clause in Figure 2, but
first we note that correctly defining this generalised structural substitution was
not a priori obvious, and the correct definition only became apparent later in

(λ : τ. t)[α := βE] = λ : τ. (t[α := β ↑0λ (E))])

(µ : τ. c)[α := βE] = µ : τ. (c[(α+ 1) := (β + 1) ↑0µ (E))])

(Λt)[α := βE] = Λ(t[α := β ↑0Λ (E))])

([γ]t)[α := βE] =

[β](E[t[α := βE]]) if γ = α,

[γ − 1](t[α := βE]) if α < γ ≤ β,
[γ + 1](t[α := βE]) if β ≤ γ < α,

[γ](t[α := βE]) otherwise.

Figure 2. Structural substitution.

the formalisation, after experimentation with a proof of type preservation. As a
result, our explanation focusses on the structural substitution applied to a typed
term in context.

Consider a term t, such that Γ ;∆ ` t : τ , and the substitution t[α := βE].
After applying the substitution, the free variable α will be replaced in the typing
environment by β, so first examine the case α < γ ≤ β. If α has been added
to the typing environment using the environment update operation, γ really
represents the variable γ − 1 shifted up by 1. However, if β is added instead,
γ − 1 is not shifted up, hence the need to decrement γ by 1 when α is replaced
by β. The case β ≤ γ < α is similar, following the same logic.

Here, we observe that the generalised structural substitution defined above
preserves a term’s typing, as the following lemma demonstrates, which follows
from an induction on the derivation of Γ ;∆〈α : δ〉 ` t : τ , using Lemma 5:

Lemma 6. If Γ ;∆〈α : δ〉 ` t : τ and Γ ;∆ ` E : σ ⇐ δ then Γ ;∆〈β : σ〉 `
t[α := β ↑βµ (E)] : τ .

The reduction relation. The values in the λµ-calculus are λ-abstractions and type
abstractions, i.e. v ::= λ : τ. t | Λ t. In Section 3, we will add data to our language,
and hence add more values. We use v, v′, and so on, to range over values. We say
that a term t is in weak-head-normal form when one of the following conditions
are met: either t is a value, or there exists α and v such that t = µ : τ.[α]v with
α ∈ fcv(v) whenever α = 0.

Use n, n′, and so on, to range over weak-head-normal forms. Define a
call-by-value reduction relation between terms using the following six core rules:

(λ : τ. t) n −→ t[0 := n]

(µ : τ1 → τ2. n) n′ −→ µ : τ2. (n[0 := 0(� ↑0µ (n′)))

(µ : τ. [0]v) −→ ↓0µ (v) provided that 0 /∈ fcv(v)

[α](µ : τ. n) −→ ↓αµ (n[0 := α�])

(Λn)τ −→ n[0 := τ]

(µ : ∀σ. n)τ −→ µ : (σ[0 := τ]). (n[0 := 0(�τ)])

We combine these rules with 5 congruence rules to implement a fully deterministic
call-by-value reduction strategy. In Section 3 we will add pairs and primitive
recursion combinators to the language, and will maintain the same left-to-right
call-by-value strategy.

Intuitively, weak-head-normal forms are the subset of terms that cannot be
reduced further by our reduction relation defined above, and would ordinarily
be considered ‘values’ in any other context. Indeed, we have the property that,
for any term t, if there exists an s such that t −→ s then t is not in normal
form. Instead, we reserve the term ‘value’ for a subset of the normal forms which
correspond more closely to what one would ordinarily think of as values, i.e.
data elements. In particular, once we add data to our language, values will be
gradually expanded to include e.g. the boolean and natural number constants,
whilst the definition of weak-head-normal forms will remain static. Note that the
structure of normal forms is constrained: they may be values, or they may be a
value preceded by a single µ-abstraction and name-part that are irreducible (i.e.
they are ‘almost’ values).

Write t −→ u to assert that t reduces in one step to u, according to the rules
above. We write −→∗ for the reflexive-transitive closure of the reduction relation
−→, and write t −→∗ u to assert that t reduces to u.

The first rule—the logical reduction rule—is the familiar β-reduction rule of
the λ-calculus, and needs no further comment. The second rule—the structural
reduction rule—pushes a normal form n′ under a µ-abstraction. In order to avoid
the capture of free µ-variables in n, indices must be appropriately incremented. In
the third rule—a form of extensionality for µ-abstractions, akin to η-contraction
in the λ-calculus—a useless µ-abstraction is garbage collected, and the free µ-
variables in the value v are adjusted accordingly when v is no longer under the
µ-abstraction. Note that we use a value here, as the term [0]v is a normal form.
In the fourth rule—the renaming rule—the µ-variables greater than α in n also
need to be decremented as the µ-abstration is stripped from the term. The fifth
rule is the β-reduction rule for types. The final rule is analogous to the second.

We conclude this section with two important metatheoretical results: type
preservation and progress, which together imply that well-typed λµ-terms, inter-
preted as programs, do not ‘go wrong’ at runtime. In particular, reduction does
not change the type of terms, and well-typed closed terms may either reduce
further, or are a normal form. Having proved that logical, structural, and type
substitution all preserve typing (in Lemmas 2, 3, and 6 respectively) we establish
that reduction in the λµ-calculus has the type preservation property:

Theorem 2 (Preservation). If Γ ;∆ ` t : τ and t −→ s then Γ ;∆ ` s : τ .

The result follows by induction on the derivation of Γ ;∆ ` t : τ . Finally, we
establish the progress property for the reduction relation. Note here that progress
holds for λ-closed terms, and there need not be any restriction on the set of free
µ-variables in the term being reduced:

Theorem 3 (Progress). For λ-closed t if Γ ;∆ ` t : τ then either t is a normal
form or there exists a λ-closed s such that t −→ s.

3 Some extensions

As mentioned in the introduction, Parigot’s λµ-calculus has a number of limita-
tions when considered as a prototype ‘classical’ programming language.

First, ‘real’ programming languages contain base data types and type con-
structors, and the addition of data types to the λµ-calculus has historically
been a challenge. Second, closed typed terms do not correspond to ‘full’ classical
logic [AH03], as typed closed terms inhabit the type of Peirce’s Law, but not
the law of Double Negation Elimination. Parigot overcame this issue by allowing
non-closed terms under µ-variables. For instance, a derivation of the Double
Negation Elimination law is encoded as the term λy.µα.[φ](y (λx.µδ.[α]x)) in the
λµ-calculus, and we note here that the µ-variable φ is free, not appearing bound
by any µ-abstraction. From a programming perspective, this is undesirable: two
morally equivalent terms inhabiting a type will not necessarily be α-equivalent,
and substituting a typed term into an arbitrary context may result in µ-variable
capture, restricting or complicating the class of refactorings, optimisations, and
other code transformations that one may safely apply to a program.

In this section, we consider a number of extensions to the λµ-calculus mech-
anisation presented in Section 2. In the first instance, we extend the λµ-calculus
to make its type system isomorphic to ‘full’ classical logic, using a technique
developed by Ariola and Herbelin. Then, we follow Geuvers et al. in adding
a type of natural numbers in ‘direct style’ to the expanded calculus. Finally,
expanding on this addition, we further add booleans, products, and tagged union
types to the calculus, to obtain a language more closely aligned with mainstream
functional programming languages.

Full classical types. In order to extend the correspondence between the types of
closed λµ-calculus to ‘full’ classical logic, Ariola and Herbelin [AH03] extended
the calculus with a falsity type, ⊥, and a distinguished µ-constant, >, which
behaved as any other µ-variable when interacting with structural substitution
but could not be bound in a µ-abstraction. A new typing rule for the type ⊥
was added to the calculus, to obtain the λµtop-calculus, which was shown to be
isomorphic to classical natural deduction.

Another approach—followed previously by Ong and Stewart [OS97], Bier-
man [Bie98], and Py [Py98], who all noted the peculiarity of open λµ-terms
inhabiting tautologies—was to collapse the syntactic category of commands into
that of terms, so that any term could be bound by a µ-abstraction. In this work,
we follow Ariola and Herbelin’s method, since it appears to be more ‘modular’: we
have an existing mechanisation of the λµ-calculus which can easily be extended
with new typing rules and constants. The collapsing method, on the other hand,
appears to be more disruptive, requiring large changes to the typing system and
grammar of our calculus. Accordingly, we extend λµ with a top µ-variable and a
new type ⊥. The grammar for commands and types now reads:

c ::= . . . | [>]t τ ::= . . . | ⊥

Γ ;∆ ` 0 : N
Γ ;∆ ` t : N
Γ ;∆ ` S t : N

Γ ;∆ ` r : ρ Γ ;∆ ` s : N→ ρ→ ρ Γ ;∆ ` t : N
Γ ;∆ ` nrec : ρ r s t : ρ

S(µ : δ. n) −→ µ : δ. n[0 := 0 (S�)]

nrec : τ n n′ 0 −→ n

nrec : τ n n′ (S m) −→ n′ n (nrec : τ n n′ m)

nrec : τ n n′ (µ : δ. n′′) −→ µ : τ. n′′[0 := 0 (nrec : τ ↑0µ (n) ↑0µ (n′) �)]

Figure 3. Typing rules and reduction cases added for natural number data.

Additionally, we extend our definition of normal form to include µ : τ. [>]v,
whenever v is a value. We use Isabelle’s option type to extend the domain and
range of the structural substitution function to support the > constant. For
example, the renaming rule for > is [>](µ : τ. c) −→ ↓0µ (c[Some 0 := None �]),
where None denotes the > constant in the structural substitution.

In a well-typed term, the command [>]t is well-typed whenever t is of type
⊥. We therefore extend our typing system with the following additional rule:

Γ ;∆ ` t : ⊥
Γ ;∆ `C [>]t

Note that > need not be added to the µ-context ∆ in the rule’s premiss.
We may now write µ-closed terms that are not typeable in the λµ-calculus.

For example, a proof of the Double Negation Elimination law is encoded as the
term λ.µ.[>](0 (λ.µ.[1]0)) (with type annotations omitted).

Adding the natural numbers. We follow [GKM13] and extend our calculus with
the natural numbers in ‘direct style’. The grammar of terms, types, values and
contexts is extended with the following new syntactic categories:

r, s, t ::= . . . | 0 | S t | nrec : τ r s t

τ ::= . . . | N
v ::= . . . | 0 | S v
E ::= . . . | S E | nrec : τ r s E

Modulo changes to the definition of values, the definition of normal forms does
not change. Here, the terms 0 and S denote zero and the successor functions,
respectively, used to embed the unary natural numbers into the calculus, à la
Gödel’s System T. The term nrec : τ r s t is a primitive recursion combinator,
and reduces to r if t is zero, and to s t (nrec : τ r s n) if t is S n.

The typing rules and reduction relation are extended to handle these new
cases, and the extensions are presented in Figure 3. Here, we write m for m-fold

applications of S to 0, and note that in the last reduction rule for nrec, the index
of µ-variables are incremented by 1 to avoid capture of free variables. Evaluation
proceeds in a left-to-right direction when evaluating the nrec combinator, in line
with our previously established convention.

Adding booleans, products, and tagged unions. We extend further, adding booleans,
products and tagged unions. The grammar of terms, types and values are extended
as follows, with contexts also extended in a similar fashion:

t, r, s ::= . . . | true | false | if : τ t then r else s |〈t, s〉 : τ | π1t | π2t |
inl : τ t | inr : τ t | case : τ t of inl x⇒ s | inr y ⇒ r

σ, τ ::= . . . | Bool | σ × τ | σ + τ

v, w ::= . . . | true | false | 〈v, w〉 : τ | inl : τ v | inr : τ v

Modulo changes to the grammar of values, normal forms remain unchanged. Here,
〈t, s〉 : τ denotes a pairing construction, and π1t and π2t the first and second
projection functions of a pair, respectively. Note that type annotations are used
liberally, for example in the if construct the whole expression has type τ . This
is somewhat unusual as such a simple type system would never ordinarily require
such heavy type annotation. However, the reduction behaviour of the calculus
makes the annotations necessary, as they provide the type for the continuation
variable when reducing a µ-abstraction, for example, in the rule:

if : τ (µ : σ.n) then s else r −→ µ : τ.(n[0 := 0 (if : τ � then ↑0µ (s) else ↑0µ (r))]

It is straightforward to extend the De Bruijn shifting and substitution func-
tions to cope with the new datatypes and type constructors. We note that when
handling case : ρ (inl : σ + τ t) of inl x⇒ s | inr y ⇒ r, the indices of free
λ-variables in s and r need to be incremented, since we implicitly represent the
bound variables x and y by the De Brujin index 0 inside s and r, respectively.

We include the additional typing and reduction rules for booleans, products
and tagged unions. For every type constructor, we have introduction and elim-
ination rules, along with a congruence rule for µ-abstractions. In this extended
system, it is straightforward to prove type preservation and progress, with both
results following by straightforward inductions.

Theorem 4 (Preservation). If Γ ;∆ ` t : τ and t −→ s then Γ ;∆ ` s : τ .

Theorem 5 (Progress). For λ-closed t if Γ ;∆ ` t : τ then either t is a normal
form or there exists a λ-closed s such that t −→ s.

Further, we can characterise the syntactic form of closed values, based on
their type, producing a form of inversion result:

Lemma 7. If t is a λ-closed value and Γ ;∆ ` t : σ then:

1. If σ = N then either t = 0 or there exists a value n such that t = S n,

2. If σ = Bool then either t = true or t = false,
3. If σ = τ1 + τ2 then either t = inl : τ1 s or t = inr : τ2 u for values s and u,
4. If σ = τ1 × τ2 then t = 〈s, u〉 : τ1 × τ2 for values s and u,
5. If σ = τ1 → τ2 then t = λ : τ1.s for some term s.
6. If σ = ∀τ then t = Λs for some term s.

The result follows by a straightforward induction. At first glance, Lemma 7
may appear useless, as our progress and preservation theorems merely guarantee
that evaluation of a λ-closed program either diverges or evaluation progresses to
a normal form. Note however that normal forms are constrained to either be a
value, or some irreducible µ-abstraction and name-part combination wrapping a
value, i.e. ‘almost a value’. In either case, Lemma 7 can be used to inspect the
syntactic structure of the value based on its type.

4 µML

µML is a prototype implementation of a strict ‘classical’ programming language
derived from the calculus presented in Section 3. The core of the interpreter is
derived from our Isabelle mechanisation via code generation: the interpreter’s
type-checker and reduction mechanism is extracted and paired with a handwritten
parser using the Menhir parser generator [PRG17] and a thin transformation
of the Abstract Syntax Tree into a nameless form. An operational semantics is
provided by a small-step evaluation function that is proved sound and complete
with respect to our evaluation relation. We therefore have the following theorem:

Theorem 6 (Determinism). The reduction relation of the polymorphic λµ-
calculus extended with datatypes is deterministic.

Finally, our progress and preservation theorems ensure that µML programs
do not ‘go wrong’ at runtime.

Example: Double Negation Elimination. We present a closed µML program
inhabiting a type corresponding to the law of Double Negation Elimination:

tabs(A) ->

fun (x : (A -> bot) -> bot) ->

bind (a : A) -> [abort]. (x (fun (y : A) ->

bind (b : bot) -> [a]. y

end end)) end end end

Here, the keywords bind and abort are µML’s rendering of the µ-abstraction and
the distinguished µ-constant, >, respectively, of our underlying calculus, whilst
[a].t introduces a command (with name a). The keywords tabs and forall

introduce a Λ-abstraction and a universal type respectively. When passed the
program above, µML type-checks it, and presents the type back to the user:

... : forall(A)(((A -> bot) -> bot) -> A)

That is, ¬¬A→ A, as expected. We obtain the value fun (x : bot) -> x after
supplying fun (f : (bot -> bot) -> bot) -> f (fun (x : bot) -> x) to
this function, along with a type parameter, and evaluating, as expected.

conjecture (mk_all_t (mk_arrow_t (mk_arrow_t (mk_arrow_t

(mk_var_t 0) mk_bot_t) mk_bot_t) (mk_var_t 0)));

apply 0 all_intro_tac; apply 0 imp_intro_tac;

apply 0 mu_top_intro_tac;

apply 0 (imp_elim_tac (mk_arrow_t (mk_var_t 0) mk_bot_t));

apply 0 (assm_tac 0); apply 0 imp_intro_tac;

apply 0 (mu_label_intro_tac 1); apply 0 (assm_tac 0);

qed ();

Figure 4. A µTP tactic-driven proof of the conjecture ∀A. ¬¬A −→ A.

Example: implication and product. We present a closed µML program inhabiting a
type corresponding to an instance of the classical tautology ¬(A→ ¬B)→ A∧B:

tabs(A) -> tabs(B) ->

fun (x : (A -> B -> bot) -> bot) ->

bind (a : A * B) -> [abort]. (x (fun (y : A) ->

fun (z : B) -> bind (b : bot) ->

[a]. {y, z} : A * B

end end end)) end end end end

Here, {y, z} : τ is µML’s concrete syntax for explicitly-typed pairs. When passed
the program above, µML type-checks it, and presents the type back to the user:

... : forall(A)(forall(B)(((A -> B -> bot) -> bot) -> A * B))

That is, ¬(A→ ¬B)→ A×B, as expected.

5 Synthesis via theorem-proving: µTP

We now present a small, prototype interactive theorem prover based on classical
first-order logic, called µTP, and built around our µML proof terms. In particular,
this system is able to synthesise µML programs from proofs.

With µTP, we follow the LCF-approach [Mil79] and provide a compact system
kernel, written in OCaml, which provides an abstract type of theorems, with
smart constructors being the only means of constructing a valid inhabitant
of this type. Each smart constructor implements a particular proof rule from
our typing relation, mapping valid theorems to new valid theorems. As well
as incrementally constructing a formula (i.e. a µML type), each forward proof
step also incrementally builds a µML term. Outwith the kernel, we provide a
mechanism for backwards-proof, via a system of tactics, and a notion of a proof
state. We note that we need not construct a µML term at all during backwards
proof, and therefore there is no need to introduce metavariables into our programs
to denote missing pieces of program deriving from incomplete derivations. Rather,
the only step that synthesises a µML program is the last collapsing of a completed
backwards proof, upon calling qed, via a series of valuation functions that ‘undo’
each backwards proof step, wherein a complete µML program is produced.

conjecture (mk_all_t (mk_all_t (mk_arrow_t (mk_arrow_t

(mk_neg_t (mk_var_t 0)) (mk_var_t 1)) (mk_sum_t

(mk_var_t 0) (mk_var_t 1)))));

apply 0 all_intro_tac; apply 0 all_intro_tac;

apply 0 imp_intro_tac; apply 0 mu_top_intro_tac;

apply 0 (imp_elim_tac (mk_neg_t (mk_var_t 0)));

apply 1 imp_intro_tac; apply 1 (mu_label_intro_tac 1);

apply 1 disj_left_intro_tac; apply 1 (assm_tac 0);

apply 0 imp_intro_tac; apply 0 (mu_label_intro_tac 1);

apply 0 disj_right_intro_tac;

apply 0 (imp_elim_tac (mk_neg_t (mk_var_t 0)));

apply 1 (assm_tac 0); apply 0 (assm_tac 1);

qed ();

Figure 5. A µTP tactic-driven proof of the conjecture ∀B.∀A.(¬B −→ A) −→ B ∨A.

We have used µTP to prove several theorems in classical first-order logic,
and have successfully extracted µML programs from their proofs, including both
programs presented in Section 4. As didactic examples we provide µTP proof
scripts for the classical theorems ∀A. ¬¬A −→ A and ∀B. ∀A. (¬B −→ A) −→
B ∨A in Figure 4 and Figure 5, respectively.3 The Law of Excluded Middle can
be easily derived as well, and indeed follows almost immediately from the second
theorem. Neither of these two theorems are intuitionistically derivable.

Proof construction with µTP is interactive. The function conjecture takes
a closed formula (type) as conjecture and sets up an initial proof state, which
can be pretty-printed for inspection by the user. The function apply takes a
goal number and a tactic to apply and either progresses the proof state using
that tactic or fails. Finally, qed closes a proof, producing an element of type thm,
raising an error if the proof is not yet complete. This qed step also typechecks the
µML proof term by the proof to ensure that the correct program was synthesised.

The basic tactics provided by the µTP system invert each of the typing rules
of the µML language. For example, all intro tac works backwards from a
universally quantified goal, whilst imp intro tac works backwards from an im-
plicational goal, introducing a new assumption. Two tactics—mu top intro tac

and mu label intro tac—are the primitive means of affecting classical reasoning
in µTP, corresponding to the two ways to introduce a µ-binder and command
combination in the underlying µML proof term. Note that this direct reasoning
with µ-binders is low-level, and only intended to ‘bootstrap’ the theorem proving
system: once familiar classical reasoning principles such as the Law of Excluded
Middle are established, the user need never have to resort to using either of these
two tactics directly.

A µML proof term serialising a µTP proof can be obtained programmatically
by the user after finishing a proof. For example the program

3 Note that formulae are currently manually constructed, due to the lack of a parser.

tabs (B) -> tabs (A) -> (fun (x : (B -> bot) -> A) ->

(bind (a : B + A) -> ([abort]. ((fun (y : B -> bot) ->

(bind (b : bot) -> ([a]. ((inr (x y) : B + A)))))

(fun (z : B) -> (bind (c : bot) ->

([a]. ((inl z : B + A))))))))))

is automatically extracted from the proof presented in Figure 5. The fact that
this program inhabits the correct type is easily established.

6 Conclusions

Proof terms for theorem-proving systems based on intuitionistic type-theory—
such as Coq and Matita—serve both as a means of communication between
systems, and as a means of independently auditing the reasoning steps taken
during a mechanised proof. In this latter respect, proof terms form a crucial
component of the trust story of a theorem proving system. In this work, we
explore the use of proof term technology in theorem-proving systems based on
classical, rather than intuitionistic, logic.

In particular, we have used the λµ-calculus as the foundation for a system of
proof terms for classical first-order logic. For this to be effective, two extensions
were considered: adding data types in ‘direct style’, and extending the calculus
to a full correspondence with classical logic so that all classical tautologies
can be serialised by closed proof terms. Accordingly, we designed µML—either
a prototype classical programming language or a system of proof terms for
classical logic—based on the call-by-value λµ-calculus extended with data types
and a distinguished µ-constant, >. All of our proofs have been mechanised in
Isabelle/HOL to guard against any unsoundness in the µML type system, and
an interpreter for µML was extracted from our Isabelle/HOL definitions.

Atop our system of proof terms, we have built a small prototype LCF-style
interactive theorem proving system for classical logic, called µTP. The µTP user
may automatically synthesise µML programs from completed tactic-driven µTP
proofs. We have presented a number of example tactic-driven proofs of classically
(but not intuitionistically) derivable theorems that we have proved in µTP as
evidence of the utility of our approach.

Future work The logic considered in this work—first-order logic—is expressive, but
strictly less expressive than the higher-order logics typically used in established
interactive theorem proving systems. We therefore aim to extend µML further,
first to a classical variant of Fω, and then to consider a classical Calculus of
Constructions. Lastly, to make µTP usable as a ‘realistic’ theorem proving
system suitable for formalising real mathematics, one would need features such
as conversions, tacticals, and a global definition database. We leave these for
future work.

Related work There has been extensive prior work by the developers of Isabelle
to retrofit the theorem prover with a system of proof terms, primarily by Berg-
hofer [BN00, Ber03]. Following the standard argument in favour of the LCF

design philosophy, one only needs to trust the Isabelle kernel implementation
in order to trust any proof carried out in the system, and proof terms as a
source of trust are strictly not needed. However, this argument breaks down
when the system kernel is complex and hard to manually audit—as in the case of
Isabelle. As we summarised in the Introduction, proof terms convey several other
advantages, such as permitting communication between systems and facilitating
proof transformation, making their retrofit an attractive prospect for users and
developers of existing systems. We note here that there is a difference in philo-
sophy between our work and that of Berghofer: we take as our starting point a
system of proof terms and build a theorem prover around them; Berghofer takes
an existing theorem prover and extracts a system of proof terms tailored to it.

Tangentially, the Open Theory format [KH12] is intended to facilitate commu-
nication of higher-order logic theorems and definitions between theorem proving
systems in the wider HOL family (HOL4, HOL Light, ProofPower, and Isabelle).
Here, the unit of communication is a sequence of primitive HOL inferences, rather
than a proof term.

Acknowledgments. Gomes and Mulligan acknowledge funding from EPSRC grant
EP/K008528 (‘REMS: Rigorous Engineering for Mainstream Systems’). We thank
the anonymous referees and Peter Sewell for their helpful comments.

References

AH03. Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators.
In ICALP, 2003.

AHS04. Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation of
continuations and prompts. In ICFP, 2004.

ARCT11. A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. The Matita interactive
theorem prover. In CADE, 2011.

BB94. F. Barbanera and S. Berardi. A symmetric lambda calculus for “classical”
program extraction. In TACS, 1994.

BB95. F. Barbanera and S. Berardi. A strong normalization result for classical
logic. Annals of Pure and Applied Logic, 76(2), 1995.

BBS97. F. Barbanera, S. Berardi, and M. Schivalocchi. “Classical” programming-
with-proofs in λPASym: An analysis of non-confluence. In TACS, 1997.

Ber03. S. Berghofer. Proofs, programs and executable specifications in higher order
logic. PhD thesis, Technical University Munich, Germany, 2003.

BHS97. G. Barthe, J. Hatcliff, and M. H. Sørensen. A notion of classical pure type
system. Electronic Notes in Theoretical Computer Science, 6, 1997.

Bie98. G. M. Bierman. A computational interpretation of the λµ-calculus. In MFCS,
1998.

BN00. S. Berghofer and T. Nipkow. Proof terms for simply typed higher order logic.
In TPHOLS, pages 38–52, 2000.

BU02. G. Barthe and T. Uustalu. CPS translating inductive and coinductive types.
In PEPM, 2002.

BW05. H. Barendregt and F. Wiedijk. The challenge of computer mathematics.
Philosophical Transactions A, 363(1835), 2005.

CP11. T. Crolard and E. Polonowski. A program logic for higher-order procedural
variables and non-local jumps. CoRR, abs/1112.1554, 2011.

dB72. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 75(5), 1972.

dG94a. P. de Groote. A CPS-translation of the lambda-µ-calculus. In CAAP, 1994.
dG94b. P. de Groote. On the relation between the lambda-mu-calculus and the

syntactic theory of sequential control. In LPAR, 1994.
dG95. P. de Groote. A simple calculus of exception handling. In TLCA, 1995.
dG98. P. de Groote. An environment machine for the lambda-mu-calculus. Math-

ematical Structures in Computer Science, 8(6), 1998.
dG01. P. de Groote. Strong normalization of classical natural deduction with

disjunction. In TLCA, 2001.
FFKD87. M. Felleisen, D. P. Friedman, E. E. Kohlbecker, and B. F. Duba. A syntactic

theory of sequential control. Theoretical Computer Science, 52, 1987.
Gir71. J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse et son

application à l’élimination des coupures dans l’analyse et la théorie des types.
In Proceedings of the Second Scandinavian Logic Symposium, 1971.

GKM13. H. Geuvers, R. Krebbers, and J. McKinna. The λµT-calculus. Annals of
Pure and Applied Logic, 164(6), 2013.

Göd58. K. Gödel. Über eine bisher noch nicht benützte erweiterung des finiten
standpunktes. Dialectica, 12(3-4), 1958.

Gor91. M. J. C. Gordon. Introduction to the HOL system. In HOL, 1991.
Gri90. T. Griffin. A formulae-as-types notion of control. In POPL, 1990.
HH14. G. P. Huet and H. Herbelin. 30 years of research and development around

Coq. In POPL, 2014.
HL91. B. Harper and M. Lillibridge. ML with callcc is unsound: https://www.seas.

upenn.edu/~sweirich/types/archive/1991/msg00034.html, 1991.
KH12. R. Kumar and J. Hurd. Standalone tactics using OpenTheory. In ITP, pages

405–411, 2012.
Kri16. J-L. Krivine. Bar recursion in classical realisability: Dependent choice and

continuum hypothesis. In CSL, pages 25:1–25:11, 2016.
MGM17. C. Matache, V. B. F. Gomes, and D. P. Mulligan. The λµ-calculus. Archive

of Formal Proofs, 2017.
Mil79. R. Milner. LCF: A way of doing proofs with a machine. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1979.
Mur91. C. R. Murthy. An evaluation semantics for classical proofs. In LICS, 1991.
OS97. C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional

computation with control. In POPL. ACM Press, 1997.
Par92. M. Parigot. Lambda-Mu-Calculus: An algorithmic interpretation of Classical

Natural Deduction. In LPAR, 1992.
Par93a. M. Parigot. Classical proofs as programs. In KGC, 1993.
Par93b. M. Parigot. Strong normalization for second order classical natural deduction.

In LICS, 1993.
Par97. M. Parigot. Proofs of strong normalisation for second order classical natural

deduction. Journal of Symbolic Logic, 62(4), 1997.
PRG17. F. Pottier and Y. Régis-Gianas. The Menhir parser generator, 2017.
Py98. W. Py. Confluence en λµ-calcul. PhD thesis, 1998.
RS94. J. Rehof and M. H. Sørensen. The λ∆-calculus. In TACS, 1994.

https://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html
https://www.seas.upenn.edu/~sweirich/types/archive/1991/msg00034.html

	Programming and proving with classical types

