
Synthesizing Formal Models of Hardware from RTL for Efficient
Verification of Memory Model Implementations
Yao Hsiao

Stanford University
USA

yaohsiao@stanford.edu

Dominic P. Mulligan
Arm Research

UK
dominic.mulligan@arm.com

Nikos Nikoleris
Arm Research

UK
nikos.nikoleris@arm.com

Gustavo Petri
Arm Research

UK
gustavo.petri@arm.com

Caroline Trippel
Stanford University

USA
trippel@stanford.edu

ABSTRACT

Modern hardware complexity makes it challenging to determine if
a given microarchitecture adheres to a particular memory consis-
tency model (or MCM). This observation inspired the Check tools,
which formally check that a specific microarchitecture correctly
implements an MCM with respect to a suite of litmus test pro-
grams. Unfortunately, despite their effectiveness and efficiency the
Check tools must be supplied a microarchitecture in the guise of a
manually constructed axiomatic specification, called a 𝜇spec model.

To facilitate MCM verification—and enable the Check tools to
consume processor RTL directly—we introduce a methodology and
associated tool, rtl2𝜇spec, for automatically synthesizing 𝜇spec
models from microprocessor designs written in Verilog, with the
help of modest user-provided design metadata. As a case study,
we use rtl2𝜇spec to facilitate the Check-based verification of the
four-core RISC-V V-scale (or multi-V-scale) processor’s MCM im-
plementation. We show that rtl2𝜇spec can synthesize a complete,
and proven correct by construction, 𝜇spec model from the Verilog
design of the multi-V-scale processor in 6.90 minutes. Subsequent
Check-based MCM verification of the synthesized 𝜇spec model
takes less than one second per litmus test.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS

memory consistency, verification, concurrency, shared memory
ACM Reference Format:

Yao Hsiao, Dominic P. Mulligan, Nikos Nikoleris, Gustavo Petri, and Caro-
line Trippel. 2021. Synthesizing Formal Models of Hardware from RTL for
Efficient Verification of Memory Model Implementations. InMICRO-54: 54th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480087

’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3466752.3480087

1 INTRODUCTION

Memory Consistency Models. In a multicore setting, multiple
hardware threads concurrently execute while modifying a shared
memory. A memory consistency model (MCM) is thus required,
which describes who sees what and when—that is, the particular
order(s) in which writes to this shared memory may become observ-
able to different threads. MCMs are described using rules which re-
strict the ordering and visibility of shared memory accesses—either
informally using natural language or formally [4, 45, 47]—with
different architectures exhibiting different MCMs [5–7, 20, 21, 44].

Notably, a sound high-level programming language MCM is not
sufficient to ensure correct execution of a parallel program. In par-
ticular, a program is only guaranteed to run correctly if a compiler
correctly translates language-level MCM primitives to assembly
instructions, and if the target microarchitecture is indeed imple-
menting the MCM specified by its instruction set architecture (ISA).
Despite the importance of correct hardware MCM implementations,
a scalable, efficient, sound, and complete methodology for verifying
processor MCM implementations remains elusive.

Verification of Hardware Memory Models. Formal verification of
hardware MCM implementations is challenging for a variety of
reasons. For example, ISA MCM correctness properties are gener-
ally articulated as ordering and visibility constraints on assembly
instructions. Deducing whether or not they hold for a particular
microarchitecture thus requires mapping these instruction-level
properties to RTL-level assertions, such as SystemVerilog Asser-
tions [43] (SVAs). These SVAs can then be proven or refuted by
off-the-shelf RTL property verification tools, many of which are
based on model checking [9, 14]. Not only is defining these asser-
tions tedious and error prone, but checking that they hold of a
design is extremely computationally intensive. Thus, it is common
for assertions to be decomposed and/or for the hardware design
itself to undergo abstraction for assertion checking to terminate.

These challenges have lead researchers to pursue other means
of evaluating the adherence of a processor implementation to its
MCM specification. Litmus tests [3, 27]—small concurrent programs
that are carefully crafted, or automatically generated [11, 26, 45],

https://doi.org/10.1145/3466752.3480087
https://doi.org/10.1145/3466752.3480087


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

to encode the implications of a given MCM on observable pro-
gram outcomes—are a popular approach. They have been used for
both post hoc formal specification of observable hardware behavior,
and for testing of hardware implementations against a particular
MCM [13, 15, 17, 18, 28, 35, 38, 39]. For example, tools have been
developed for running litmus tests on hardware with varied timings,
interleavings, and system load imposed by a test harness, in order to
coax out bugs in the hardware MCM implementation [3, 34]. While
sound, this approach is incomplete for failing to prove hardware
will always execute litmus tests correctly (i.e., without producing
forbidden results) even if no bug is found during validation testing.

The Check Tools. Building on the litmus test-based testing ap-
proaches above, prior work introduced the Check family of tools [24,
25, 31, 33], which incorporate formal rigor. Specifically, the Check
tools provide an efficient mechanism for proving that a microarchi-
tecture’s MCM implementation is correct with respect to a suite of
litmus test programs. Remarkably, recent work has shown that this
approach can even be extended to prove correctness over the space
of all programs [30].

Despite their success in finding bugs in real hardware, the Check
tools possess a limitation: they require as inputmanually-constructed

formal specifications of hardware designs, called 𝜇spec models,
rather than Verilog implementations. A 𝜇specmodel is an axiomatic
model of a microarchitecture expressed in a DSL called 𝜇spec—
essentially a specific theory, or collection of function and predicate
symbols, in first-order logic. A gap therefore remains between the
𝜇spec models that support efficient Check-based verification and
the RTL that hardware designers write and know.

The rtl2𝜇spec Approach and Tool. In this paper, we pursue a
new approach to scalable, Check-based verification of hardware
MCMs by automatically synthesizing 𝜇spec models directly from
user-supplied RTL written in Verilog, with the help of modest user-
provided design metadata (§4.2.1 and §4.3.4). We introduce the
rtl2𝜇spec tool, which takes a Verilog processor design as input,
and produces a complete 𝜇spec model as output, which can serve
as input into any of the Check MCM verification tools. In design-
ing rtl2𝜇spec, our most fundamental challenge is bridging the
inherently operational character of Verilog with the axiomatic spec-
ification style of 𝜇spec—the latter of which consists of axioms
describing happens-before invariants (HBIs). HBIs capture causal
happens-before relationships between hardware events that are pre-
served by a particular Verilog design for every executing program.

We bridge the operational-axiomatic gapwith our first insight—
𝜇spec models can be decomposed into several categories of HBIs,
with the two most general classifications being intra-instruction

HBIs versus inter-instruction HBIs. Intra-instruction HBIs describe
happens-before orderings that are localized to a single instruction’s
execution on a microarchitecture. Inter-instruction HBIs describe
happens-before orderings relating the execution of a pair of in-
structions. This HBI decomposition (§3) ensures completeness of
the rtl2𝜇spec synthesis procedure. In other words, identifying the
HBI building blocks of a complete 𝜇spec model is the first step in
automatically synthesizing one.

Our second insight, which enables rtl2𝜇spec to synthesize a
complete set of HBIs from a Verilog design with minimal designer
input, is that a control-flow dataflow graph (CDFG) representation

of a Verilog design (i.e., a netlist) contains a subset of the target
HBIs, which can be further used to construct HBI hypotheses for the
remaining set of HBIs to be extracted. These hypotheses constitute
an over-approximation of all HBIs implied by the Verilog design,
and can be encoded as SVAs and evaluatedwith formal RTL property
verification tools [12] to either accept or reject them.

Our third insight, which leads to rtl2𝜇spec’s efficiency over
previous approaches, is a reliance on proving simple and localized
HBIs when incrementally constructing the 𝜇specmodel. In our case
study (§5), rtl2𝜇spec automatically generates and evaluates 122
SVAs when synthesizing a 𝜇spec model from a four-core version of
the RISC-V V-scale processor (multi-V-scale) [29, 31]. Remarkably,
each assertion is either proven or refuted in seconds—3.3 seconds
on average. In contrast, prior work that aims to identify inaccura-
cies in hand-written 𝜇spec with respect to a Verilog design times
out after 11 hours of runtime when evaluating the same microar-
chitecture [31]. We attribute this difference in verification time to
the difference in assertion complexity between the two approaches.

Contributions. In this paper we make three major contributions:
(1) The decomposition of 𝜇spec models into fundamental HBI

building blocks: We observe that 𝜇specmodels can be decom-
posed into a collection of intra- and inter-instruction HBIs.
Further, inter-instruction HBIs can be classified as resulting
from either structural or dataflow dependencies between
instructions during their execution on a microarchitecture.
This decomposition facilitates a systematic procedure for
synthesizing HBIs, and thus 𝜇specmodels, directly from RTL.
In summary, we are the first to define what constitutes a
complete 𝜇spec model for a given Verilog design.

(2) The rtl2𝜇spec tool for synthesizing complete, and proven cor-

rect by construction, 𝜇specmodels from RTL: rtl2𝜇spec takes
a processor design written in Verilog as input and outputs a
𝜇spec model by synthesizing all relevant HBIs. In doing so,
rtl2𝜇spec exhibits 100% proof coverage on the compliance
of RTL to synthesized 𝜇spec model, advancing the state-of-
the-art [31]. The resulting 𝜇spec model can serve as input
to any of the Check MCM verification tools [24, 25, 30, 31,
33, 41, 42].

(3) The verification of the RISC-V multi-V-scale MCM implemen-

tation: We use rtl2𝜇spec to facilitate the Check-based ver-
ification of the multi-V-scale [29, 31] processor, rooted in

RTL. In doing so, we identify a new bug in the RISC-V V-
scale microarchitecture, and thus the multi-V-scale, that al-
lows invalid instructions to update memory, and which was
missed by prior work. rtl2𝜇spec synthesizes a complete
𝜇spec model from the multi-V-scale design in 6.90 minutes.
Subsequent Check-based MCM verification using the 𝜇spec
model takes less than one second per litmus test to prove

MCM compliance (with respect to said test).

2 BACKGROUND

Encoding Ordering Behaviors with Litmus Tests. Simply put,MCMs
specify the values that can be legally returned by shared memory
loads in a concurrent program via constraints on the ordering and
visibility of shared memory accesses. MCMs are a fundamental
component of a processor’s ISA specification, and the ability of a



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(a) Message passing (MP) litmus test with forbidden Sequentially-

Consistent (SC) outcome. Memory locations are initialized to 0.

(b) 𝜇hb graph execution of the MP litmus test in (a) on the RISC-V

multi-V-scale [31] (Fig. 3a), corresponding to the non-SC outcome.

It features a cycle, signifying that this execution is unobservable.

Figure 1: A 𝜇hb graph, as in (b), can be used to represent the

hardware specific execution of a litmus test program, as in

(a). (b)’s 𝜇hb graph was generated by COATCheck [25] using

an rtl2𝜇spec-synthesized 𝜇specmodel of the RISC-Vmulti-

V-scale [31]. mgnode_n row labels represent groups of state

elements there were merged in the rtl2𝜇spec-synthesized

𝜇specmodel due to exhibiting the same ordering behaviors.

microarchitecture to correctly execute a program relies crucially
on the correctness of its MCM implementation.

Prior work has proposed a number of tools for evaluating the
correctness of hardware MCMs [15, 18, 28, 35, 36, 38, 39]. Litmus
test programs [3, 27]—small programs designed demonstrate con-
straints on shared memory ordering and visibility that are imposed
by a given MCM—are central to this. They are used to concisely
articulate the legal ordering behaviors of concurrent programs on
hardware implementing a particular MCM.

Fig. 1a gives an example of a litmus test program, commonly
called the message passing test (MP). Here, Core 0 writes some
data x before setting a flag y, while Core 1 reads the flag y before
reading the data x. In keeping with typical litmus test convention,
we assume that initially all memory locations are initialized to 0
(i.e., x=0 and y=0). The outcome of a litmus test program denotes
the values returned by the loads of the test—in this test, featuring
two loads, there are four possible outcomes. The loads on Core 1
can return either the initial values of x and y (0s), or the values
written by Core 0 (1s). For Sequential-Consistency (SC) [23]—
which requires that each legal program outcomemust correspond to
an execution where all threads’ executions preserve program order,
and there exists a total global order on all memory operations—all
but one of the four possible outcomes is permitted. Specifically,
r1 = 1 and r2 = 0 at the end of the test is a forbidden outcome
according to SC. MCMs can be categorized by the non-SC outcomes

that they permit or forbid for various litmus tests. In this example,
the non-SC outcome is, by definition, forbidden by SC and TSO,
e.g., x86-TSO [21].

Litmus tests are useful for conducting verification of hardware
MCMs and aim to exercise behaviors most likely to exhibit bugs.
Researchers have also proposed tools for efficiently generating
complete (up to a bound in instruction count) suites of litmus test
programs that encode all unique ordering behaviors imposed by a
formally specifiedMCM [11, 19, 26]. Such comprehensive litmus test
suites can be consumed by the Check family of tools [24, 25, 31, 33]
to soundly and completely (with respect to the bound on litmus
test program size) verify the correctness of hardware MCM imple-
mentations. In other words, given a collection of litmus tests, the
Check tools will provewhether or not a specific microarchitecture is
guaranteed to correctly execute every test, using microarchitectural

happens-before (𝜇hb) analysis, as described next.

Microarchitectural Happens-Before Analysis. The Check tools
leverage a type of Lamport-style happens-before analysis [22], called
𝜇hb analysis, which relies on representing hardware-specific pro-

gram executions as directed graphs, called 𝜇hb graphs. Fig. 1b presents
an example of a 𝜇hb graph, depicting a non-SC execution of the MP
litmus test of Fig. 1a on the RISC-V multi-V-scale [29] processor
(see Fig. 3a). Program order proceeds from left to right at the top
of the graph. Nodes represent hardware events that take place dur-
ing a program’s execution, specifically an instruction (represented
by a 𝜇hb graph column label) updating some particular hardware
state element(s) (represented by a 𝜇hb graph row label) in the mi-
croarchitecture, such as a store updating a store buffer entry. A
𝜇hb graph node may represent an instruction updating either sin-
gle state element in the microarchitecture or a collection of state
elements. Directed edges represent happens-before relationships be-
tween nodes, for example capturing that a store always updates an
entry in its core-local store buffer before it updates the L1 cache.

Note that 𝜇hb nodes and edges are implied by the microarchi-
tecture in combination with the executing program itself and may
vary across executions of the same program on the same design.
For example, the yellow PO edges in Fig. 1b result from the multi-
V-scale’s processor cores fetching instructions from instruction
memory according to program order. Further, the pink edge order-
ing i1’s update of mem before i2’s update of regfile corresponds
to the program-level data-flow between i1 which writes to y and
i2which reads the result of i1’s write. The conditions under which
𝜇hb nodes and edges are instantiated in a 𝜇hb graph corresponding
to a specific hardware design and program are elaborated on in §3.

𝜇hb graphs enable efficient reasoning about whether a particular
execution of a program (such as one that is expressly forbidden
by the ISA MCM) is possible on the microarchitecture in question
or not. Specifically, acyclic 𝜇hb graphs represent program execu-
tions that are possible on a given microarchitecture, whereas cyclic
graphs represent impossible executions, since they would require
events to be transitively causally related to themselves, implying a
contradiction. The 𝜇hb graph in Fig. 1b features a cycle, indicating
that the multi-V-scale (which implements SC [31]) correctly forbids
the non-SC litmus test outcome, r1 = 1 and r2 = 0.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

Axiomatic Specifications of Microarchitectures. Using an SMT
solver [10, 25], the Check tools search the space of all possible exe-
cutions of a litmus test on a given microarchitecture, with the intent
of identifying executions that violate the ISA-specified MCM. Intu-
itively, this can be understood as enumerating all possible acyclic
𝜇hb graphs in search of ones which correspond to illegal program
outcomes. To support this analysis, the microarchitecture is input
as a 𝜇specmodel, a series of axioms expressed in a specially-tailored
typed first-order theory. These axioms describe how a legal hard-
ware instruction flows through the microarchitecture, over the
course of a program’s execution, and how each instruction may
interact with other instructions that are in-flight concurrently. In
particular, the hardware state elements that an instruction updates
and depends on, as well as the (partial) order on its state updates,
must be specified. For example, a store instructionmight first update
the fetch pipeline register, followed by execute pipeline register,
and lastly the memory. Or, a load’s update to the regfile might
depend on a prior store’s update to memory, if the load and store
access the same memory location.

With respect to 𝜇hb graphs, a 𝜇spec model describes 𝜇hb nodes
and the intra-instruction happens-before edges required for model-
ing the execution of each instruction type, andwhich inter-instruction
happens-before edges may exist between nodes corresponding to
different instructions. In this paper, we define for the first time, what
renders a 𝜇specmodel complete with respect to a microarchitecture
whose ordering behavior it is intended capture.

3 A TAXONOMY FOR CONSTRUCTING

COMPLETE 𝜇SPECMODELS

Establishing what constitutes a complete 𝜇spec model is the first
step toward automatically generating one. Thus, a key contribution
of our work is decomposing 𝜇specmodels into a core set of building
blocks, which we identify as four hierarchical categories of HBIs.
In this section, we describe our taxonomy for categorizing these
HBIs. In §4, we explain how we use this taxonomy to incrementally
and systematically synthesize a complete set of HBIs (encoded as
𝜇spec axioms), and thus a complete 𝜇spec model, from RTL.

3.1 Happens-Before Invariants

Verilog is an operational description of how state updates take place
in hardware. In contrast an axiomatic 𝜇spec describes happens-
before invariants (HBIs) that are preserved by a Verilog design in any
executing program. A Verilog design might specify that the fetch
pipeline register is updated with new a value at non-stall cycles. In
contrast, a 𝜇spec model would assert an HBI stating that if some
instruction i0 precedes another instruction i1 in program order,
i0 will update the fetch pipeline register before i1 updates the
fetch pipeline register. As mentioned in §1, 𝜇spec models can be
decomposed into axioms that either describe the execution paths of
individual instructions (via intra-instruction HBIs, discussed in §3.2)
or those that describe pairwise interactions between instructions
during their execution on a microarchitecture (via inter-instruction
HBIs, discussed in §3.3).

3.2 Intra-Instruction HBIs

Intra-instruction HBIs describe the execution paths of instruction
types as they execute on a microarchitecture. Thus, a set of intra-
instruction HBIs are required for each ISA instruction to encode
their individual ordering behaviors in a 𝜇spec model. In our multi-
V-scale case study (§5), rtl2𝜇spec synthesizes a 𝜇spec model that
encodes the behavior of RISC-V load and store instructions—lw and
sw—only, given our focus on MCM verification in this paper.

Concretely, the set of intra-instruction HBIs for a particular
instruction type specify which hardware state elements, at the
granularity of sets of registers or memory cells, are updated on
its behalf during its execution, along with a partial ordering on its
induced state updates. In 𝜇hb graphs, the intra-instruction HBIs
of an instruction type specify how nodes and intra-instruction
edges (that is, edges that relate nodes corresponding to the same
instruction instance) should be instantiated. For example, a set of
intra-instruction HBIs corresponding to the execution path of lw
on the RISC-V V-scale processor is shown below.
forall microops i, IsAnyRead i ⇒
AddEdges [((i, inst_DX), (i, mgnode_0)); % hbi0

((i, mgnode_0), (i, mgnode_3)); % hbi1
((i, mgnode_0), (i, regfile))]. % hbi2

Above, three HBIs have been encoded in a single axiom in the
𝜇spec DSL. hbi0 specifies that for all instructions i, such that i is a
memory read operation (IsAnyRead i), i will update the inst_DX
state element before it updates the mgnode_0 state element. Here,
mgnode_n state elements each comprise several state elements that
rtl2𝜇spec deems equivalent in terms of ordering behaviors (see
§4.4). The overall effect of the axiom above is to instantiate the
intra-instruction 𝜇hb nodes and edges for lw instructions in Fig. 1b.

3.3 Inter-Instruction HBIs

Inter-instruction HBIs describe how instructions can interact with

each other during their execution. This characterization can be fur-
ther refined by the type of interaction as detailed in §3.3.1 and §3.3.2.

3.3.1 Structural Dependencies. A pair of instructions may be in-
volved in a structural dependency if their accesses to a particular
state element or collection of state elements must be serialized.
Structural dependencies take two forms—spatial and temporal.

Spatial structural dependencies. Spatial structural dependencies
exist between a pair of hardware state updates that result from
two instructions updating the same hardware state element, which
could be a single register or a single cell within a memory array. If
two instructions i0 and i1 update the same hardware state element
s during their execution—that is, their execution paths in 𝜇hb graph
form both feature a node corresponding to an update of s—then
their updates to s must be serialized. We therefore need some HBIs
to describe this serialization order. As one possibility, i0 and i1
may update s in any order depending on the dynamic conditions of
program execution. However, if i0 and i1 share a reference ordering,
meaning they previously updated another common state element
in a particular order or are ordered in the program, it is possible
their updates to s will be constrained to take place in an way that
either always agrees with or always contradicts the reference order.
This amounts to three possible ordering behaviors.



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

The 𝜇spec excerpt below gives an example axiom that features a
single inter-instruction HBI which corresponds to a spatial struc-
tural dependency, where the reference ordering is program order:
forall microops i0, i1,

ProgramOrder i0 i1 ⇒
AddEdge ((i0, inst_DX), (i1, inst_DX)). % hbi0

Above, we assert that for all pairs of instructions i0 and i1,
if i0 appears in program order before i1 (ProgramOrder i0 i1,
i.e., the reference ordering), then i0 will update the inst_DX state
element before i1 does. The axiom instantiates inter-instruction
𝜇hb edges for pairs of instructions that are ordered in program
order with respect to their updates on the inst_DX state element,
such as the yellow edges labeled PO in Fig. 1b. Conceptually, this
axiom enforces an in-order instruction fetch for the cores of the
multi-V-scale.

Temporal structural dependencies. Temporal structural depen-
dencies exist between a pair of state updates that result from two
instructions updating distinct hardware state elements, where those
state elements may only be accessed by a single instruction at any
clock cycle. That is, temporal structural dependencies serialize the
order in which instructions may update a state element within
some set of state elements that is time-multiplexed between differ-
ent instructions. For example, the horizontal dotted black lines in
Fig. 1a illustrate the pipeline stage partitioning of the multi-V-scale
processor, with mgnode_0 and mgnode_2 all belonging to the same
pipeline stage of the multi-V-scale microarchitecture. Since only
one instruction can access a pipeline stage at a time in this design,
updates by different instructions to any of mgnode_0, or mgnode_2
must be inherently serialized. As another example, processor mem-
ories with single read and/or write ports serialize any accesses that
they process.

The serialization order of temporal structural dependencies has
the same three ordering options as spatial structural dependencies—
either order, consistent with a reference ordering, or inconsistent
with a reference ordering. The 𝜇spec excerpt below gives an exam-
ple of a single-HBI axiom that corresponds to a temporal structural
dependency, where the reference ordering is the order in which a
pair of instructions update the inst_DX register during their exe-
cution:
forall microops i0, i1, IsAnyWrite i0 ⇒ IsAnyWrite i1 ⇒

EdgeExists ((i0, inst_DX), (i1, inst_DX)) ⇒
AddEdge ((i0, mgnode_2), (i1, mgnode_0)). % hbi0

This axiom asserts that for all pairs of instructions i0 and i1,
such that i0 and i1 are bothmemorywrite operations, if i0 updates
the inst_DX state element before i1 does, then i0 will update the
mgnode_2 state element before i1 updates mgnode_0.

3.3.2 Dataflow Dependencies. A dependency may also exist be-
tween a pair of instructions because they share data, not just be-
cause they contend for shared resources. Specifically, a pair of
instructions may possess a dataflow dependency if one instruction
can update a state element that is read from and therefore influences
the state update of the other instruction. For example, a store in-
struction in the multi-V-scale, sw, writes to the processor’s memory,
mem, and its memory update can be read by a load instruction, lw,
accessing the same address. As a result, the sw influences the lw’s
update of the register file, regfile. The following 𝜇spec excerpt

Figure 2: An overview of the rtl2𝜇spec 𝜇specmodel synthe-

sis procedure, as detailed in §4. Blue boxes are SVA evalua-

tion; black ones are analysis pass as Yosys extension.

describes a single-HBI axiom that corresponds to such a dataflow
dependency:
forall microops i0, i1,

IsAnyWrite i0 ⇒ IsAnyRead i1 ⇒ SamePA i0 i1 ⇒
SameData i0 i1 ⇒ NoWritesInBetween i0 i1 ⇒

AddEdge((i0, (0, mem)), (i1, regfile)). % hbi0

Here, we assert that for all pairs of instructions i0 and i1, where
i0 is a memory write and i1 is a memory read, if both i0 and
i1 access the same physical memory address with no intervening
writes, and i1 reads the value written i0, then a dataflow depen-
dency exists between i0 and i1 via mem. Since reads and writes can
only communicate through main memory (mem) on the V-scale, the
dataflow dependency implies that the write must update mem before
the read accesses mem and writes the data it retrieves to regfile.

4 SYNTHESIZING 𝜇SPEC FROM RTL

rtl2𝜇spec incrementally synthesizes a complete set of proven HBIs
from an input Verilog design using a combination of static analysis
and model checking. The synthesis flow is summarized in Fig. 2.
We will refer to Fig. 3 throughout this section—a précis of the main
stages of the synthesis procedure per our case study in §5.

4.1 RTL to Full-Design Data Flow Graphs

The data-flow graph (DFG) representation of a Verilog design, re-
ferred to as a full-design DFG in this paper, contains all of the
information needed for rtl2𝜇spec to orchestrate the synthesis of a
complete set of HBIs. Intuitively, this is because data-flow is a type
of happens-before relation. Hence, rtl2𝜇spec first extracts such a
full-design DFG from the input Verilog.

To extract a Verilog design’s DFG, we use two static analysis
tools from the commercial Symbiotic EDA Suite,1 Verific [8] and
Yosys [46]. Verific is a parser that accepts Verilog or SystemVerilog
as input and outputs a netlist. Yosys can then transform such a
netlist into an intermediate representation (IR) called RTL Inter-
mediate Language (RTLIL) which supports efficient Yosys-enabled

1We use Symbiotica to support SystemVerilog syntax with Verific.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

(a) Illustration of the RISC-V V-scale.

Some relevant state elements are la-

beled in blue/orange. Orange state is

part of rtl2𝜇spec’s designer-supplied

metadata (§4.2.1).

(b) Netlist generated by Verific+Yosys from (a).

Brown/blue/green nodes are state elements up-

dated during execution of both lw and sw/only
sw/only lw.

(c) Per-instruction DFGs produced by

specializing the netlist in (b). Solid (resp.

dashed) boxes denote local (resp. re-

mote) state elements.

(d) Intra-instruction HBIs (black nodes

and edges). Dotted black lines and stage
ID labels (§4.2.2) denote pipeline stage

partitionings.

(e) Adds inter-instruction HBIs to (d).

Green/blue/pink edges correspond to

spatial/temporal/data-flow HBIs. PO

denotes program order.

Axiom W_path: forall microops i1,
IsAnyWrite i1 ⇒ AddEdges [
((i1, inst_DX), (i2, sw_in_WB));
(i1, inst_DX), (i1, lw_in_WB));
(i1, sw_in_WB), (i1, mem))].
Axiom Temporal:
forall microops i1, i2,
ProgramOrder i1 i2 ⇒ AddEdge(
(i1, regfile), (i2, mem)).
Axiom Dataflow:
forall microops i1, i2,
IsAnyWrite i1 ⇒ IsAnyRead i2 ⇒
SamePA i1 i2 ⇒ SameData i1 i2 ⇒
NoWritesInBetween i1 i2 ⇒
AddEdge((i1, mem), (i2, regfile)).

(f) Three axioms from the rtl2𝜇spec-

synthesized 𝜇spec model of the multi-V-

scale. The impact of these axioms on gen-

erating 𝜇hb graphs can be seen in (e).

Figure 3: Given the multi-V-scale in (a), rtl2𝜇spec generates per-instruction DFGs, as in (c), and deduces from them intra-

instruction HBIs, as in (d), and inter-instruction HBI hypotheses, as in (e). HBI hypotheses are evaluated by JasperGold, and

only proven hypotheses are included as axioms in the final 𝜇specmodel, as in (f).

netlist analyses and transformations.2 Note that RTLIL is simply
an alternate netlist representation.

Fig. 3b illustrates a simplified excerpt of the netlist that corre-
sponds to the multi-V-scale design in Fig. 3a. The netlist in Fig. 3b
was produced by running the multi-V-scale through Verific, and
then running the Verific-generated netlist through Yosys. Observe
that the netlist is simply a CDFG. Nodes are standard cells such
as registers, memory arrays, and combinational logic gates. Edges
represent wired connections between standard cells.

Since 𝜇spec models articulate HBIs at the granularity of hard-
ware state elements, our target full-design DFG contains nodes that
correspond solely to these state elements and edges which repre-
sent (potential) data-flow relationships between them. rtl2𝜇spec’s
transformation of a Verilog design into RTLIL form enables it to eas-
ily produce such aDFGwith the help of a newRTLIL analysis pass in
Yosys. Specifically, this RTLIL analysis pass performs a depth-first-
search over all standard cells in the netlist, establishing a mapping
between parent and child state elements that are connected via
pure combinational logic. The full-design DFG is then constructed
2Yosys can also transform Verilog into RTLIL, but rtl2𝜇spec uses Verific as its front
end parser to support SystemVerilog syntax.

using the Verilog design’s state elements as nodes, and the parent-
to-child mappings as edges. In other words, the full-design DFG
is constructed by collapsing out all combinational circuits sepa-
rating state elements, including control flow, in the RTLIL netlist.
Since this collapsing effectively assumes that all possible data-flows
happen for every execution of every possible instruction, the full-
design DFG represents an over-approximation of the hardware-level
data-flow that can be induced by any microarchitecture-supported
instruction. rtl2𝜇spec uses this over-approximation to synthesize
intra-instruction HBIs in §4.2.

Note that the analysis in this section only needs to consider the
unique modules in the input design, such as a single core plus all
shared resources in a homogeneousmulti-core setting—rtl2𝜇spec’s
current scope.

4.2 Synthesizing Intra-Instruction HBIs

A full-design DFG (§4.1) for a Verilog implementation contains the
information needed by rtl2𝜇spec to synthesize intra-instruction
HBIs for each instruction type of interest; this can be reduced to
specializing the full-design DFG for each instruction type, resulting
in instruction-specific DFGs. An instruction-specific DFG captures



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(1) the precise set of state elements that are updated during the
execution of a particular instruction type, expressed as DFG nodes,
and (2) the relative (partial) order of these updates, expressed as DFG
edges, since the data-flow edges represent the flow of information
from one register to the next in time.

4.2.1 User-Supplied Core-Local Metadata. To support the construc-
tion of instruction-specific DFGs, rtl2𝜇spec requires three pieces
of user-supplied design metadata.

First, the instruction fetch register (IFR), which holds instruc-
tions when they are first fetched from memory, must be identified
(and its signal name specified). Knowledge of which RTL signal con-
stitutes the IFR enables rtl2𝜇spec to reference the starting point
of an instruction’s execution life-cycle on the microarchitecture.

Second, per-pipeline stage program counter registers (PC reg-
isters or PCRs) must be identified, which are used by rtl2𝜇spec
to precisely reason about an instruction’s presence in a particular
pipeline stage and thereby attribute specific state updates to its
execution. rtl2𝜇spec refers to these registers via an array, called
PCR, where PCR[0] is located in the same pipeline stage as the IFR
by default, and PCR[i] corresponds to the PCR in the 𝑖th pipeline
stage with respect to the IFR’s pipeline stage.

Third, a special PC signal, the instructionmemory PC (IM_PC),
must be identified. The IM_PC is the signal that is used to index into
and access instruction memory, and all registers included in the
PCR array should be reachable from the IM_PC in the full-design
DFG.

In addition to the design metadata above, rtl2𝜇spec requires
the user to supply the binary encodings of all instructions which
will be included in the synthesized 𝜇spec model. For example, in
our case study in §5 we direct rtl2𝜇spec to consider lw and sw
instructions only, given our goal of MCM verification.

4.2.2 Filtering Front-End State Elements. To construct a specialized
DFG for an instruction type, rtl2𝜇spec must identify the subset
of full-design DFG nodes whose corresponding state elements are
updated on behalf of its execution. Since the IFR marks the start
of an instruction’s execution life-cycle, all nodes that precede the
IFR (e.g., front-end predictor state) can be excluded from further
consideration. To perform this filtering, rtl2𝜇spec first identifies
all nodes in the full-design DFG that are reachable from the IM_PC.
During this identification process, rtl2𝜇spec also tags each reach-
able node with an integer value, stage, capturing its distance from
IM_PC in the full-design DFG. Since edges in the full-design DFG
represent single-cycle data-flow relationships,3 stage effectively
associates each register with a pipeline stage, and it is used to pre-
cisely attribute hardware state updates to a particular instruction’s
execution (as it passes through some stage) as detailed further in
§4.2.3. Directed cycles in the full-design DFG are handled by retain-
ing the shortest distance from IM_PC as the stage for each node.

All nodes with a corresponding stage value less than that which
is associated with IFR (including IM_PC) are filtered from the reach-
able set, since they precede IFR in the design. The remaining reach-
able nodes correspond to state elements that may be updated on
behalf of instructions as they flow from IFR through the various
3Data-flow relationships in the full-design DFG are “single-cycle,” since they corre-
spond to direct connections between state elements through combinational logic that
was collapsed out (§4.1).

stages of execution. Note that stage values for nodes are updated
at this point such that the IFR is associated with stage number 0.

4.2.3 Generating Intra-Instruction HBI Hypotheses. With the fil-
tered set of candidate nodes, rtl2𝜇spec can now construct special-
ized DFGs for each instruction type of interest. For each instruction
type, rtl2𝜇spec needs to determine which of the filtered nodes,
that are also reachable from the IFR in the full-design DFG, are
indeed updated on behalf of its execution. Related to this point,
rtl2𝜇spec currently assumes that each instruction type can exhibit
at most one execution path through the design under verification—
the single-execution-path assumption. In other words, the set of state
elements updated by an instruction are always the same each time
the instruction executes. Phrased differently, an instruction will
always instantiate the same column of 𝜇hb nodes in a 𝜇hb graph.
Thus, if rtl2𝜇spec finds that a state element can ever be updated
on behalf of a particular instruction’s execution, it concludes that
it is always updated on its behalf. §6.4 discusses the implications of
this limitation, which we plan to alleviate in future work.

To isolate the set of nodes whose corresponding state elements
are update by a specific type of instruction, rtl2𝜇spec relies on a
set of automatically generated SVAs, which encode HBI hypotheses.4
In general, HBI hypotheses are are evaluated using the JasperGold
property verifier [12], and proven hypotheses correspond to valid
HBIs that will be inserted into final 𝜇specmodel. In the case of intra-
instruction HBI synthesis, HBI hypotheses are assertions designed
specifically to determine whether or not an instruction’s execution
can ever update a particular state element (i.e., always update, per
the single-execution-path assumption above).

4.2.4 Formulating Intra-InstructionHBI Hypotheses as SVAs. rtl2𝜇spec
automatically synthesizes HBI hypotheses formulated as SVAs with
the help of SVA templates. For intra-instruction HBI hypotheses,
rtl2𝜇spec makes use of two SVA templates, shown in Fig. 4. Both
leverage the association between registers in the PCR array and
other non-PC state elements established by identical stage labels
(§4.2.2) to attribute the update of a non-PC state element s in stage
i (i.e., stage(s) = i) to an instruction whose PC is contained in
stage i’s PCR, namely PCR[i]. We describe below how Fig. 4’s SVA
templates are used to synthesize intra-instruction HBIs for a single
instruction type next. The process is repeated for each instruction
type of interest.

The first SVA template (Fig. 4a) is instantiated once for every
node (i.e., state element) in the filtered set of candidate nodes (§4.2.2)
that is reachable from the IFR in the full-design DFG. Thus, the
property is parameterized by instruction type (op) and state element
(s). It attempts to prove (via assertion A0) that when a particular
instruction i0 (with a particular type—op) is passing through the
stage associated with state element s (‘PCR_<stage(s)> == pc0,
where pc0 is the PC associated with i0), that s will never change
its value. A failed proof signifies that s can be updated by the in-
struction type of interest when it passes through its corresponding
stage. State elements that can never be updated on behalf of the
instruction under evaluation are ignored henceforth.

While the first SVA template is able to deduce that a particular
state element can be updated by a particular instruction once it

4We use the terms SVA and HBI hypothesis interchangeably in this paper.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

P0: assume (first |−> ( (`PCR_0 != pc0 [*0:$]) ##1
(`PCR_0 == pc0 [*1:$]) ##1 (`PCR_0 != pc0) ));
P1: assume (`PCR_0 == pc0 |−> `IFR == i0);
P2: assume (opcode(i0) == op);
A0: assert (`PCR_<stage(s)> == pc0 |−> s == $past(s));

(a) Assertion A0 attempts to prove that state element swill never be

updated by the execution of a particular instruction i0with opcode

op. PCR_<stage(s)> represents string concatenation of PCR_with the

stage ID associated with s.

P1: assume (`PCR_0 == pc0 |−> `IFR == i0);
P2: assume (opcode(i0) == op);
P3: assume (first |−> strong((`IFR == `NOP && `PCR_0 != pc0 [*0:$

]) ##1 (`PCR_0 == pc0) ) );
A1: assert (first |−> s_eventually( (`PCR_<stage> == pc0) ##1 (!(`

PCR_<stage> == pc0)) ));

(b) Assertion A1 attempts to prove that instruction i0 with opcode

opwill eventually progress to and exit some pipeline stage, stage. It
is used to prove precondition P0 in (a) for stages where instructions

of type op can update state—i.e., instructions with type op fail A0 for
some s in stage.

Figure 4: rtl2𝜇spec uses the SVA templates in (a) and (b) to

instantiate intra-instructionHBI hypotheses and ultimately

synthesize intra-instructionHBIs (§4.2.3). Template parame-

ters are blue. Symbolic values that correspond to the instruc-

tion under evaluation by the property are green.

progresses to a particular stage, the second SVA template (Fig. 4b)
attempts to prove that said instruction will eventually make its
way to the stage where it is capable of updating said state. For
each stage that contains state element(s) that were retained after
evaluating the first set of SVAs (Fig. 4a), the SVA in Fig. 4b attempts
to prove (via assertion A1) that the instruction type of interest will
eventually progress to and exit said stage when it executes. Thus,
the property is parameterized by instruction type (op) and pipeline
stage (stage), and a successful proof certifies forward progress.

Nodes which pass the HBI hypothesis evaluation of §4.2.3 are
considered to be always updated on behalf of the instruction type
under evaluation and are used to construct a specialized instruction-
specific DFG. This is done by extracting a new DFG from the full-
design DFG that is restricted to only contain nodes corresponding
to these always-updated state elements. During extraction, DFG
edges are retained if they directly relate extracted nodes. Immediate
parent nodes of the always-updated state-elements in the full-design
DFG are also extracted. These aid in synthesizing inter-instruction
HBIs that result from data-flow dependencies as detailed in §4.3.5.

Fig. 3c gives an example of two simplified instruction-specific
DFGs corresponding to the sw (top) and lw (bottom) instructions of
the RISC-V V-scale. The primary root node of each graph is the IFR
register, which is the inst_DX signal for the V-scale, and all nodes
reachable from it are always updated on behalf of the instruction
that corresponds to the DFG. Other nodes with no incoming edges,
such as regfile and mem, are reserved parent nodes.

Recall that the intra-instruction HBIs for a particular instruc-
tion type articulate which 𝜇hb nodes and intra-instruction 𝜇hb
edges must exist in any 𝜇hb graph featuring an instance of said
instruction. The nodes reachable from the primary root node in
an instruction-specific DFG indicate relevant 𝜇hb nodes, while

directed data-flow edges (relating the reachable nodes) indicate
relevant intra-instruction 𝜇hb edges. In Figs. 3d and 3e, the nodes
and black edges correspond to intra-instruction HBIs for lw and sw
on the V-scale.

4.3 Synthesizing Inter-Instruction HBIs

After synthesizing a complete set of intra-instructionHBIs, rtl2𝜇spec
synthesizes inter-instruction HBIs which result from structural or
data-flow dependencies (§3.3). For each category of inter-instruction
HBIs, rtl2𝜇spec compares all pairs of per-instruction DFGs to iden-
tify all possible inter-instruction interactions, each of which re-
quires an HBI to be instantiated. Whenever rtl2𝜇spec determines
that an HBI must be synthesized to describe a potential pairwise
interaction between instructions, it formulates HBI hypotheses (as
SVAs) so that the precise HBI can be deduced with the help of
JasperGold. In this way, rtl2𝜇spec ensures that the final 𝜇spec
model contains a complete set of inter-instruction HBIs that have
all been formally verified.

Notably, inter-instruction HBIs can describe interactions be-
tween instructions via local on-core resources (e.g., pipeline regis-
ters) or resources that are off-core and thus remote (e.g., memories,
including on-chip caches). Furthermore, inter-instruction HBIs can
describe interactions between instructions executing on either the
same processor core (intra-core HBIs) or on different cores (inter-core
HBIs). Inter-core HBIs inherently involve interactions via shared
remote state whereas intra-core HBIs may be facilitated via inter-
actions through either local or remote state elements.

When instantiating inter-instructionHBIs in SVA form, rtl2𝜇spec
distinguishes between HBI hypotheses involving local versus re-
mote resources. That said, the general structure of inter-instruction
HBI hypotheses remains the same regardless of whether local ver-
sus remote state elements are involved. §4.3.1, §4.3.2, and §4.3.5
give the general procedure for generating relevant inter-instruction
HBI hypotheses regardless of the types of state elements involved,
while §4.3.3 describes how HBI hypotheses are instantiated in SVA
form in slightly different ways for local versus global resources.

4.3.1 Generating Spatial Structural HBI Hypotheses. A spatial struc-
tural dependency exists between a pair of instructions if they both
update an identical hardware state element during their execution.
To identify these dependencies, rtl2𝜇spec iterates over all pairs
of instructions and compares their DFGs to find common nodes
(representing identical state elements) which are reachable from
the IFRs (the primary root nodes) in both. Given a pair of instruc-
tions, each such pair of common nodes constitutes a unique spatial
structural dependency. In Fig. 3c, inst_DX, sw_in_WB, lw_in_WB,
and wdata (four distinct state elements) are all updated by both
lw and sw, since nodes representing these state elements are all
reachable from the IFR nodes in their corresponding DFGs (recall
that inst_DX is the IFR for multi-V-scale). Four spatial structural
dependencies therefore exist between lw and sw on the multi-V-
scale. Note that the four spatial dependencies identified here all
involve local state elements, but spatial dependencies can involve
global state elements as well.

A spatial structural dependency between a pair of instructions
always results in the inclusion of a corresponding HBI in the final
𝜇spec model. However, the direction of the HBI must be deduced.



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

For each spatial structural dependency identified between all pairs
of instructions (including same-instruction pairs), rtl2𝜇spec either
directly outputs an HBI or generates HBI hypotheses to determine
the direction of the HBI corresponding to the dependency with
respect to a reference ordering if one exists.

As discussed in §3.3.1, pairs of instructions cannot be constrained
to update a common state element in a particular order without
a relevant reference ordering. Thus, given a structural dependency
involving such an instruction pair, rtl2𝜇spec will synthesize an
HBI indicating that while updates to the common state element on
behalf of the instructions of interest are ordered, their direction is un-
constrained. No proof effort is necessary. One such example arises
when rtl2𝜇spec is considering potential inter-core interactions
between instructions and identifies a remote memory array (e.g.
mem in the multi-V-scale) as a common node between a pair of per-
instruction DFGs (e.g., the DFGs corresponding to sw instructions
in the multi-V-scale).

For pairs of instructions involved in a structural dependency
with a relevant reference ordering that rtl2𝜇spec has identified
(e.g., instructions executing on the same core which minimally
have program order as a reference ordering), HBI hypotheses are
generated in an attempt to prove that the instructions will always
update the common state element in an order that is consistent with
their reference ordering. Specifically, these hypotheses attempt to
prove that:

For instructions i0 and i1 and state element s, if i0 is ordered
before i1 with respect to some reference ordering (e.g., program
order), then i0 will update s before i1 updates s.

§4.3.3 gives more detail on precisely how inter-instruction HBI
hypotheses are instantiated as SVAs, depending on whether s is
local or remote. Regardless, to transform these HBI hypotheses into
HBIs, the SVAs are evaluated by JasperGold, and proven hypotheses
are translated by rtl2𝜇spec into 𝜇spec axioms. On the other hand,
invalid hypotheses require a second round of evaluation to check if
the instructions always perform their updates in an order that is
inconsistent with the reference order. Regardless of whether or not
this final hypothesis is proven, an HBI can be deduced for inclusion
in the final 𝜇spec model, as structural HBIs can be ordered in one
of three ways (see §3.3.1), and structural HBI hypotheses always
imply existence of a structural HBI.

4.3.2 Generating Temporal Structural HBI Hypotheses. Temporal
structural dependencies occur when a pair of distinct state elements
can only be accessed by one instruction at a time, and therefore
updates by different instructions to these distinct elements are
serialized by the hardware. rtl2𝜇spec considers two sources of
temporal dependencies: (1) state elements that belong to the same
pipeline stage and are only accessible by a single instruction at
any cycle, and (2) arrays of state elements (such as a register file or
memory) whose access is constrained by a restricted interface.

To identify temporal dependencies, rtl2𝜇spec iterates over all
pairs of instructions and compares their corresponding DFGs. For
each pair of DFGs, rtl2𝜇spec looks for pairs of nodes (one in each
DFG) that reside in the same pipeline stage (using stage labels
from §4.2.2) or access the same register or memory array. Such
node pairs may signify (true) temporal structural dependencies

between instructions. True temporal structural dependencies iden-
tified by pairwise DFG analysis always result in the inclusion of a
corresponding HBI in the final 𝜇spec model. As with spatial struc-
tural dependencies, the direction of the HBI must be deduced. False
temporal structural dependencies involve instructions that can up-
date a pair of state elements concurrently. For example, pairwise
DFG analysis may determine that two instructions update a com-
mon memory array where the memory array is in fact multi-ported.
rtl2𝜇spec presently assumes single-ported memories (which is
sufficient for our case study in §5) but supporting multi-ported
memories is straightforward—one additional SVA check to filter
out false temporal structural dependencies is required.

As with spatial structural HBIs, if there is no relevant reference
ordering that can be established for instantiating a given true tem-
poral structural HBI, the HBI can be simply synthesized without
any hypothesis generation or evaluation. True temporal structural
dependencies for which a relevant reference ordering can be estab-
lished require extra proof effort via temporal HBI hypotheses. The
generated temporal HBI hypotheses attempt to prove that:

For instructions i0 and i1 and state elements s0 and s1, if i0 is
ordered before i1 with respect to some reference ordering (e.g.,
program order), then i0 will update s0 before i1 updates s1.

§4.3.3 explains how hypotheses fitting th format above are for-
mulated as SVAs to be evaluated by JasperGold. Again, if the first
hypothesis proof fails, rtl2𝜇spec attempts to prove that the updates
are sequenced in the reverse order with respect to the reference
ordering. Also note, that structural HBI hypotheses are simply a
specialization of temporal HBI hypotheses, where s0 = s1.

4.3.3 Formulating Structural HBI Hypotheses as SVAs. This section
explains how rtl2𝜇spec instantiates the inter-instruction HBI hy-
potheses from §4.3.1 and §4.3.2 as SVAs, depending on whether
they involve local or remote state elements.

Structural HBI Hypotheses Involving Local State. When rtl2𝜇spec
instantiates structural HBIs involving local state as SVAs, designer-
provided PCRs (§4.2.1) are again used to uniquely identify in-flight
instructions and attribute particular state updates to their execution
(§4.2.3). Recall that an update of local state element s is attributed
to the instruction whose PC is contained in the PCR associated
with s’s pipeline stage during the cycle s is updated. Notably, for a
structural dependency involving local state, the two PCRs that are
relevant for instantiating a structural HBI hypothesis are the same.
Thus, the SVAs generated by rtl2𝜇spec to deduce structural HBIs
reduce to checks of the order in which two instructions, i0 and i1,
update a common PCR with respect to a reference ordering.

Notably, for all pairs of registers within the same pipeline stage
(which all share a PCR), the direction of all relevant structural HBIs
can be deduced by evaluating one or two SVAs—one (resp. two) if
the structural HBIs associated with that stage are consistent (resp.
inconsistent) with a reference ordering. This results in significant
runtime savings for rtl2𝜇spec which can evaluate, for structural
HBIs involving local state, a number of SVAs that scales with the
number of pipelines stages rather than with the number of local
state elements.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

Structural HBI Hypotheses Involving Remote State. When an in-
struction updates a remote state element, the update is typically
facilitated via a communication interface that connects the proces-
sor core executing the instruction to the remote resource. Thus,
remote state updates are generally not attributed to particular in-
struction PCs, but rather to particular requests over the commu-
nication interface. This scenario necessitates a new approach for
detecting state updates that are initiated by specific instructions,
beyond associating state elements with same-stage PCRs.

To instantiate as SVAs HBI hypotheses that require reasoning
about the ordering of updates to remote state (e.g., memories, in-
cluding on-chip caches), rtl2𝜇spec assumes the existence of a
generic designer-annotated request-response interface. §4.3.4 de-
scribes the structure of this interface, which the designer must
expose to rtl2𝜇spec for each remote state element (array of state
elements).

Given a request-response interface through which instructions
can update a particular remote resource, rtl2𝜇spec can instantiate
(as SVAs) HBI hypotheses, like those in §4.3.1 and §4.3.2, involv-
ing said resource. The designer-exposed request-response interface
(1) enables SVAs to attribute remote state updates to specific in-
structions without solely using PCRs, and (2) decomposes ordering
proofs involving remote resources into multiple fine-grained and
localized SVAs. For an HBI involving a remote resource, rtl2𝜇spec
instantiates and evaluates it with the help of three SVAs, as follows:

Req-Snd: Requests corresponding to the instructions’ state up-
dates are sent from their local core to the remote resource in
an order that is consistent with their reference ordering (e.g.,
program order). Req-Rec: For any two requests that are sent
from the same core to the remote resource, they are received

in the order in which they were sent. Req-Proc: For any two
requests from the same core that are received by the shared
resource, they are processed in the order received.

Consider a temporal HBI hypothesis that aims to prove that a pair
of same-core instructions always update a remote memory array
in an order that is consistent with program order. Three SVAs will
be instantiated. First, the Req-Snd SVA will be formulated, using
PCRs to associate the sending of requests to the memory array with
particular instructions. Second, the Req-Rec SVA will leverage the
exposed request-response interface, which labels requests with IDs
of the cores that issued them, to determine if the memory array
receives same-core requests in the order in which they were sent.
Finally, the Req-Proc SVA will also leverage requests’ core IDs to
determine if the memory array processes same-core requests in the
order in which they are received.

If any of the three SVAs associated with an HBI hypothesis
involving a remote resource are invalidated, they are re-evaluated
with an inverted reference ordering. Further, rtl2𝜇spec can refine
hypotheses to detect ordering relationships that are only preserved
for same-address or even same-bank accesses.

4.3.4 User-Supplied Interface Metadata. rtl2𝜇spec requires com-
munication interfaces that facilitate updates of remote state to be
structured according to a generic request-response template. For
each remote resource, rtl2𝜇spec requires the designer to supply a
mapping between output ports of unique processor cores and input

ports of the remote resource with respect to five main signals—
transaction type, transaction size, address, data, and core
ID. Furthermore, rtl2𝜇spec requires for each remote resource that
any signals used to indicate the completion of processing a request
are also identified (and their signal names specified).

4.3.5 Generating Data-flow HBI Hypotheses. A pair of instructions
are involved in a data-flow dependency if one instruction updates a
state element that is read from and subsequently influences a state
update of the other. To identify data-flow dependencies between
instructions, rtl2𝜇spec again considers all pairs of per-instruction
DFGs. For a given DFG pair, rtl2𝜇spec searches for common nodes,
where one node instance is reachable from the IFR (the primary
root node) in one instruction’s DFG (the writer instruction) and the
other constitutes a parent node (§??) in the other instruction’s DFG
(the reader instruction). Such a pair of nodes signifies a data-flow
dependency from the writer’s update of the common node to the
reader’s update of the common node’s child node (in its DFG). In
Fig. 3c, mem is one such common node in the sw and lw DFGs that
is written by sw instructions but is read from and influences the
state updates of lw instructions with respect to the regfile.

4.3.6 Formulating Data-Flow HBI Hypotheses as SVAs. To deduce
the HBIs that correspond to identified data-flow dependencies,
rtl2𝜇spec generates HBI hypotheses to confirm the conditions
under which they exist between a pair of instructions’ state up-
dates. Such hypotheses try to prove that:

For instructions i0 and i1, where i0 updates some state element
s that can pass data to i1, if i0 is ordered before i1 with respect
to some reference ordering, then i0 will write to s before i1
reads s.

To instantiate data-flow HBIs as SVAs, rtl2𝜇spec must again
be able to attribute state updates to particular instructions. It does
so with the help of user-identified PCRs (for local state elements)
and user-identified request-response interfaces (for remote state
elements), as in §4.3.3. Note that rtl2𝜇spec assumes that memory
operations are functionally correct. For example, a write of some
data value v to some state element s (e.g., a memory location), will
indeed write v to s. Likewise, a read of a state element s will return
the exact value stored in s.

4.4 From Validated HBIs to a 𝜇specModel

§4.2 and §4.3 detail rtl2𝜇spec’s procedure for collecting a complete
set of proven correct HBIs to describe an input microarchitecture,
with the help of JasperGold.

Node Merging. All deduced HBIs operate at the granularity of
individual state elementswithin the input design. To improve the effi-
ciency and scalability of analyses that use 𝜇specmodels, rtl2𝜇spec
agglomerates state elements into groups, and updates HBIs accord-
ingly. This abstraction procedure is reducible to a 𝜇hb graph node
merging problem. Specifically, rtl2𝜇spec merges a pair of intra-
instruction nodes for an instruction if the two nodes reside at the
same distance from the IFR node and are both involved in the same
set of inter-instruction HBIs.



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Syntax Translation. After node merging, the final 𝜇spec model
is generated via syntactic translation of validated HBIs to 𝜇spec.

5 CASE STUDY

We demonstrate the effectiveness and efficiency of rtl2𝜇spec by us-
ing it to automatically synthesize a complete 𝜇spec model from the
multi-V-scale processor [29, 31]. We use the resulting 𝜇spec model
to evaluate the correctness of the V-scale’s MCM implementation.

5.1 The RISC-V multi-V-scale

The multi-V-scale [29, 31] consists of four Sequentially Consis-
tent [23] cores. Each core features a three-stage in-order pipeline
implementing the RISC-V 32-bit base instruction set. The four cores
interact with each other via a single shared memory module. The
design features a single arbiter that connects all cores to the mem-
ory and allows one core to access memory per cycle, according to
a round-robin policy. Thus, on concurrent memory requests, the
arbiter services only one core and stalls all others looking to issue
requests. The arbiter can accept a new memory request on each
clock cycle due to the memory’s pipelined design.

A single core of the multi-V-scale features 1,042 wires, 605 stan-
dard cells, 55 registers and 2memories, and 1,088 D flip-flop bits. The
four-core design features 15,616 wires, 3,185 standard cells, 200 reg-
isters and 5 memories, and 4,135 D flip-flop bits. To run rtl2𝜇spec
on the multi-V-scale, we slightly modify the design to conform to
rtl2𝜇spec’s structural requirements on request-response commu-
nication interfaces (§4.3.4). Specifically, we extend the output port
of the arbiter and all buffers holding memory requests with two
bits each in order to tag memory requests with core IDs. The result
is a 4-bit increase in design size with no additional logic.

We supply rtl2𝜇spec with the slightly modified multi-V-scale
design (in SystemVerilog), along with all required design meta-
data (§4.2.1 and §4.3.4). rtl2𝜇spec is loaded as a C++ extension
to the Symbiotic EDA Edition [20201202A] of Yosys v0.9+3715.
HBI hypotheses are embedded in SVA 2009 [1] and evaluated with
JasperGold v2016.09. All experiments are run on a compute node
featuring a dual 32-core 2.9GHz Intel Xeon CPUs with 512GB RAM.

5.2 Verifying the multi-V-scale’s MCM

We use the latest release of the Check MCM verification tools,
called COATCheck [25], to verify the multi-V-scale’s adherence to
Sequential Consistency. As discussed in §2, the Check tools conduct
litmus test based verification of hardware MCMs. For our litmus
test input, we use a suite of 56 litmus tests composed of both hand-
written tests from an x86-TSO litmus test suite [35] and tests that
were automatically generated with the diy framework [2]. The
Check tools also require a 𝜇spec model which rtl2𝜇spec synthe-
sizes directly from the multi-V-scale’s RTL implementation. The
correct-by-construction 𝜇spec model and litmus tests were sup-
plied to COATCheck which determined that the synthesized model
passed all 56 litmus tests. We detail our results in §6.

Prior work has also sought to address the gap between 𝜇spec
models and RTL, namely RTLCheck [31]. RTLCheck seeks to vali-
date a manually-constructed 𝜇spec model against a Verilog imple-
mentation with respect to a suite of litmus test programs. The user
supplies as input a 𝜇specmodel, a Verilog design, a set of mappings

to link to the two, and a suite of litmus tests. RTLCheck then simul-
taneously checks for each litmus test that the 𝜇specmodel faithfully
captures the Verilog behaviors exercised by the test and that the test
exhibits the correct behavior when it runs on the microarchitecture.
Similar to rtl2𝜇spec, RTLCheck leverages SVAs and JasperGold.

We run the RTLCheck verification procedure on the multi-V-
scale with the same suite of 56 litmus tests, both of which were
acquired from the RTLCheck github repository [32]. We compare
the performance, scalability, and completeness of RTLCheck and
rtl2𝜇spec along two dimensions: (1) ability deduce a correct 𝜇spec
model, and (2) ability to conduct litmus test-based verification on
Verilog designs. We note that we compare RTLCheck to rtl2𝜇spec
using the same JasperGold solver engines. Given this, our reported
runtimes for RTLCheck are improved from the original paper [31],
due to the presence of JasperGold’s Tri engine that was released
after RTLCheck’s original publication.

6 RESULTS

6.1 Bug Discovered in the multi-V-scale

While lifting a 𝜇spec model from the multi-V-scale, rtl2𝜇spec
exhibited two assertion failures when trying to prove an intra-core
temporal HBI involving a remote state array, namely main memory.
rtl2𝜇spec instantiated a set of SVAs in an attempt to prove that
two memory requests from the same core will update the memory
in an order that agrees with program order. One SVA in particular
attempted to prove that if a pair of memory requests from the same
core are received by the memory, the memory will process them
in the order in which they are received. This SVA failed for sw x
-> sw y and lw x -> sw y pairs, where x != y. The implications
of this in the final 𝜇spec model would have been that the memory
could not preserve program order for sw/lw x -> sw y instruction
sequences.

The counterexample trace produced by JasperGold for the ex-
ample above showed that an undefined instruction was able to
update the memory; instead it should have triggered an exception.
Specifically, an instruction with an encoding similar to RISC-V’s sw
but where the width field of the instruction has an undefined value,
(namely funct3=3’b111) is able to update the memory. We fixed
this issue in the multi-V-scale implementation before re-running
rtl2𝜇spec to synthesize a fresh 𝜇spec model.

6.2 rtl2𝜇spec Performance Breakdown

Fig. 5 summarizes the overhead of synthesizing a complete 𝜇spec
model for MCM verification (lw and sw instructions only) from
the multi-V-scale with rtl2𝜇spec. Overall, it takes 6.90 minutes

to synthesize the 𝜇spec model, which includes 4.7 seconds of
Verilog parsing and HBI hypothesis generation and 2.1 seconds of
Python post-processing. JasperGold’s evaluation of 122 rtl2𝜇spec-
synthesized SVAs accounts for the bulk of the run time—about
6.78 minutes in total. Running COATCheck on the rtl2𝜇spec-
synthesized 𝜇spec model takes 1.5 seconds in total for all 56 litmus.

Optimizing Structural HBI Hypotheses. When generating struc-
tural HBI hypotheses, rtl2𝜇spec considers specific pairs of instruc-
tion types at a time. One such hypothesis might be instantiated to
determine the order in which lw and sw instructions, specifically,



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

Intra-Instruction Structural (Spatial) Structural (Temporal) Dataflow Total

# SVAs 107 1 12 (+1 spatial) 2 120
Runtime (s) 355.0 5.2 31.1 15.8 407.1

Runtime/SVA (s) 3.3 5.2 2.6 7.9 3.3

# HBI Hypo. / # HBI
Local 180 / 155 129 / 129 4,762 / 4,719 2 / 2 5,073 / 5,005
Global 25 / 22 15 / 15 59 / 59 1/ 1 100 / 97
Total 205 / 177 144 / 144 4,821 / 4,778 3 /3 5,173 / 5,102

Figure 5: Results for rtl2𝜇spec’s synthesis of amulti-V-scale 𝜇specmodel. SomeHBI hypotheses graduate toHBIs (by proving

SVAs) and are included in final 𝜇spec model. The total runtime is 6.78 minutes, with a std. dev. of 8.60 seconds for proving

SVAs. (+1 spatial) indicates that 1 spatial SVA served to validate the remaining temporal HBI hypotheses that are not covered

by the 12. All runtimes are averaged over five runs of rtl2𝜇spec.

update some common state element (e.g., wdata in Fig. 3). As an
optimization, rtl2𝜇spec relaxes instruction-specific structural HBI
hypotheses to prune the number of SVAs that JasperGold must eval-
uate. In particular, instruction-specific properites are modified such
that the property refers to an arbitrary pair (rather than a specific
pair) of instructions. In other words, rtl2𝜇spec tries to prove an
instruction-specific property for all possible pairs of instructions
simultaneously. If the relaxed property fails, rtl2𝜇spec reverts back
to the finer-grained instruction-specific encoding. This optimiza-
tion reduced the number of properties evaluated by JasperGold
(while synthesizing a 𝜇spec model of the multi-V-scale) by a factor
of about 𝑖2, where i is the number of instruction types evaluated.

6.3 Performance and Proof Coverage

Fig. 6 provides a quantitative and qualitative comparison of rtl2𝜇spec-
assisted Check-based verification of the multi-V-scale’s MCM im-
plementation with RTLCheck. Both charts feature the 56 evaluated
litmus test programs along the x-axis and verification times on
the y-axis on a log scale.

Fig. 6a effectively compares the combined performance of validat-
ing a 𝜇spec model and proving that the multi-V-scale will execute
a given litmus test correctly. Recall that RTLCheck simultaneously
proves that a given 𝜇spec model is correct with respect to input
litmus test and that the litmus test will execute as required by MCM
specification on the microarchitecture. These proof times are repre-
sented by the yellow bars. However, likely due to the complexity of
SVAs generated by RTLCheck, not all litmus tests can be verified to
completion. Incomplete proofs are noted with dashed lines. On the
other hand, rtl2𝜇spec synthesizes a complete 𝜇spec model in one
step, proving that it is correct with respect to the microarchitecture
by construction. This cost can then be amortized over the number
of litmus tests evaluated on the final model using the Check tools.
The gray bars represent the amortized overhead (over 56 litmus
tests) of synthesizing a multi-V-scale 𝜇spec model. Meanwhile, the
blue bars represent the overhead of evaluating each of the 56 lit-
mus tests on the synthesized 𝜇spec model with COATCheck. The
average latency of RTLCheck for evaluating all 56 tests (including
those whose proofs were incomplete) is 5,787 seconds. In contrast
the averaged litmus test execution time and amortized lifting time
demonstrated by the rtl2𝜇spec approach are 0.03 and 7.39 seconds,
respectively, for a total of 6.24 seconds.

Fig. 6b compares the runtime of evaluating a microarchitecture’s
MCM implementation with respect to each of the 56 litmus tests us-
ing the RTLCheck and rtl2𝜇spec approaches. RTLCheck optimizes

the procedure of proving that a hardware design correctly executes
a given litmus test program when proofs about the correctness of
a user-supplied 𝜇spec model are not required. This optimization
enables higher verification performance in some cases. Run time re-
sults for this optimized variant of RTLCheck are presented in orange
bars. Again, dashed bars signify incomplete proofs. The blue bars
representing runtimes for litmus test evaluation with the rtl2𝜇spec
approach are identical to those in Fig. 6, but redrawn for better com-
parison. Overall, RTLCheck spends an average of 1,508 seconds
proving that the litmus tests cannot exhibit MCM bugs when they
run on the microarchitecture (including incomplete ones), whereas
the rtl2𝜇spec approach can leverage an already-lifted 𝜇specmodel
to conduct verification a single test in 0.03 seconds on average.

6.4 rtl2𝜇spec Scope

In-Order, Out-of-Order, and Superscalar. rtl2𝜇spec supports and
has been evaluated on in-order processors. Theoretically, it can
support a restricted class of out-of-order processors that do not
speculate. rtl2𝜇spec can also handle superscalar designs, subject to
the single-execution-path (§4.2.3) assumption. Such an in-scope de-
sign cannot feature multiple execution lanes for a single instruction
type—this would directly violate assumption.

Single-Execution-Path and Single-Data-Source Assumptions. In
addition to the single-execution-path assumption, rtl2𝜇spec re-
quires that designs feature a single data source per data-flow de-
pendency that an instruction can be involved in (as the reader
instruction)—the single-data-source assumption. An execution path
can be thought of as a the set of 𝜇hb nodes that gets instantiated
for a particular instruction. A data source corresponds to a unique
data sourcing location for a data-flow relationship (a load whose
read data can be sourced from a caches or DRAM directly violates
this—two data sources which can service a single data-flow rela-
tionship). Handling designs that violate these constraints presently
requires more user involvement; however, we think this is still an
important advance over existing fully-manual approaches.

MainMemory. rtl2𝜇spec places no special restrictions onDRAM
main memory other than the requirement that memory requests
must be tagged with IDs of their issuing core. Memory controllers
are free to reorder requests. Multiple memory ports and banked
memories are also theoretically supported by rtl2𝜇spec, but have
not been evaluated.



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(a) Time to verify compliance of the multi-V-scale RTL with its 𝜇spec model on a per litmus test basis (yellow) for RTLCheck, compared with

the amortized time to synthesize a complete 𝜇spec model (gray) plus the time to conduct litmus test verification (blue) for rtl2𝜇spec.

(b) Time to conduct litmus test-based MCM verification of the multi-V-scale using RTLCheck (orange) versus a rtl2𝜇spec-synthesized 𝜇spec

model (blue). Blue bars are identical to those in (a).

Figure 6: Performance comparison of rtl2𝜇spec-assisted versus RTLCheck [31]-based verification hardware MCMs.

User-SuppliedMetadata. While rtl2𝜇spec requires some designer-
providedmetadata to accompany the input design (§4.3.1 and §4.3.2),
we expect annotations will be straightforward to provide, even with
a complex design. In particular, many signals are likely to be in-
volved in other standard property-based verification flows.

Scalability. While we cannot make definitive claims about the
scalability of rtl2𝜇spec, we have reason to be optimistic. First,
rtl2𝜇spec generates highly localized properties which support low
proof times with low variability. For example, rtl2𝜇spec leverages
the most recent reference ordering between a pair of instructions
when instantiating HBI hypotheses as SVAs. This enable tool to
take advantage of RTL cut points that are already commonly used
in commercial processor verification flows. Second, HBI hypotheses
are independent and can be evaluated in fully in parallel. Finally,
rtl2𝜇spec’s synthesis procedure features opportunities for opti-
mization, like the elimination of redundant SVAs (§4.3.3 and §6.2).

7 RELATEDWORK AND CONCLUSIONS

With minimal intervention, the rtl2𝜇spec tool synthesizes an ax-
iomatic description of hardware behavior—in the guise of a 𝜇spec
model—from a Verilog design. To demonstrate its efficacy, we ap-
plied the tool to the multi-V-scale, thereby synthesizing a 𝜇spec
model in 5.79 minutes. Subsequent verification of MCM litmus tests
takes less than one second per test. Moreover, we identified a new,
previously missed bug in the Verilog design of the V-scale.

Note that several dedicated tools are available for systematic
litmus-based post-silicon testing of hardware, including litmus [3],

mcversi [16], and PerpLE [34], and dedicated tools for GPU test-
ing [40]. rtl2𝜇spec, on the other hand, can be used to verify hard-
ware before tape out.

The Check tools [24, 25, 30, 31, 33, 41, 42] are the most relevant
prior work, especially RTLCheck. However, RTLCheck requires a
user-provided 𝜇spec model, a processor implementation in Verilog,
and a set of mappings from 𝜇spec primitives to signals in Verilog.
In contrast, rtl2𝜇spec only requires a Verilog implementation and
modest design metadata.

ISA-Formal[37] checks RTL correctness by comparing state be-
fore and after the execution of an instruction against the machine
readable definition of the Arm Architecture [5]. ISA-Formal, in
contrast to rtl2𝜇spec, does not verify the memory system and its
concurrency implications.

There are several interesting avenues for future work. We chose
the RISC-V V-scale core used in our case study for its relative
simplicity and because it eased our comparison with the RTLCheck
tool, the current state-of-the-art. An obvious avenue for future work
is applying our techniques to other processors—for example an Arm
Cortex design, which feature more complex microarchitectural
features and also exhibit weak memory behaviors, in contrast to
the V-scale’s strong consistency model. The Pipeproof [30] and
Checkmate [41] tools could also be integrated with rtl2𝜇spec. In
the case of Pipeproof, this would allow us to conduct full proofs of
MCM correctness, side-stepping litmus tests altogether. Checkmate,
on the other hand, searches for security vulnerabilities in hardware
designs using 𝜇hb analysis. Integrating both tools with rtl2𝜇spec
would allow them to work directly from source Verilog.



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

ACKNOWLEDGMENTS

We thank our shepherd and the anonymous reviewers for their
helpful feedback. This work was supported by the National Science
Foundation (under the grant CCF-2017863).

REFERENCES

[1] 2009. Institute of electrical and electronic engineers (IEEE) standard for
SystemVerilog–Unified Hardware Design, Specification, and Verification Lan-
guage.

[2] Jade Alglave, LucMaranget, Susmit Sarkar, and Peter Sewell. 2010. Fences inWeak
Memory Models. Proceedings of the 22nd International Conference on Computer

Aided Verification (CAV) (2010). http://dx.doi.org/10.1007/978-3-642-14295-6_25
[3] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:

Running Tests Against Hardware. Proceedings of the 17th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS)

(2011).
[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and DataMining forWeakMemory. ACMTransactions

on Programming Languages and Systems (TOPLAS) 36, 2 (2014), 7:1–7:74.
[5] Arm. 2013. Arm Architecture Reference Manual.
[6] Arm. 2021. The Arm memory model tool. https://developer.arm.com/

architectures/cpu-architecture/a-profile/memory-model-tool Accessed 12th
April 2021.

[7] Krste Asanović. 2017. The RISC-V Memory Consistency Model. RISC-V Organi-

zation (2017). https://riscv.org/2017/04/risc-v-memory-consistency-model/
[8] Verific Design Automation. 2019. Verific’s Parser Platform.
[9] Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking (Repre-

sentation and Mind Series). The MIT Press.
[10] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. 2009. Satisfiability modulo

theories. In Handbook of Satisfiability. 825–885.
[11] James Bornholt and Emina Torlak. 2017. Synthesizing Memory Models from

Framework Sketches and Litmus Tests. Proceedings of the 38th Conference on

Programming Language Design and Implementation (PLDI) (2017).
[12] Cadence Design Systems, Inc. [n.d.]. Cadence JasperGold formal verification

platform. https://www.cadence.com/en_US/home/tools/system-design-
and-verification/formal-and-static-verification/jasper-gold-verification-
platform.html Accessed 12th April 2021.

[13] Nathan Chong and Samin Ishtiaq. 2008. Reasoning about the Arm Weakly
Consistent Memory Model. In Proceedings of the ACM SIGPLAN workshop on

memory systems performance and correctness (MPSC). 16–19.
[14] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2000. Model Checking.

MIT Press.
[15] Francisco Corella, James M. Stone, and Charles Barton. 1993. A formal specifi-

cation of the PowerPC shared memory architecture. Technical Report Computer

Science Technical Report RC 18638(81566), IBM Research Division, T.J. Watson

Research Center (1993).
[16] M. Elver and V. Nagarajan. 2016. McVerSi: A test generation framework for

fast memory consistency verification in simulation. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA). 618–630.
[17] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,

Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size
concurrency: Arm, POWER, C/C++11, and SC. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, (POPL). 429–442.
[18] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit

Sarkar, and Peter Sewell. 2015. An integrated concurrency and core-ISA architec-
tural envelope definition, and test oracle, for IBM POWER multiprocessors. In
Proceedings of the 48th International Symposium on Microarchitecture (MICRO).
635–646.

[19] Naorin Hossain, Caroline Trippel, and Margaret Martonosi. 2020. TransForm:
Formally Specifying Transistency Models and Synthesizing Enhanced Litmus
Tests. Proceedings of the 47th International Symposium on Computer Architecture

(ISCA) (2020).
[20] IBM. 2013. Power ISA Version 2.07.
[21] Intel Corporation. 2007. Intel 64 architecture memory ordering white paper.
[22] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558–565.
[23] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs. IEEE Transactions on Computing 28, 9 (1979),
690–691.

[24] Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2014. PipeCheck: Spec-
ifying and Verifying Microarchitectural Enforcement of Memory Consistency
Models. Proceedings of the 47th International Symposium on Microarchitecture

(MICRO) (2014).

[25] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee. 2016.
COATCheck: Verifying Memory Ordering at the Hardware-OS Interface. Proceed-
ings of the 21st International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2016).
[26] Daniel Lustig, AndrewWright, Alexandros Papakonstantinou, and Olivier Giroux.

2017. Automated Synthesis of Comprehensive Memory Model Litmus Test Suites.
Proceedings of the 22nd International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS) (2017).
[27] Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. 2010. Generating Litmus

Tests for Contrasting Memory Consistency Models. 22nd International Conference
on Computer Aided Verification (CAV) (2010).

[28] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave,
Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter Sewell, and Derek Williams.
2012. An Axiomatic Memory Model for POWER Multiprocessors. Proceedings of
the 24th International Conference on Computer Aided Verification (CAV) (2012).

[29] Albert Magyar. 2016. A Verilog implementation of the RISC-V Z-scale micropro-
cessor. https://github.com/ucb-bar/vscale.

[30] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Aarti Gupta. 2018.
PipeProof: Automated Memory Consistency Proofs for Microarchitectural Speci-
fications. Proceedings of the 51st International Symposium on Microarchitecture

(MICRO) (2018).
[31] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer.

2017. RTLCheck: Verifying the Memory Consistency of RTL Designs. Proceedings
of the 50th International Symposium on Microarchitecture (MICRO) (2017).

[32] Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael Pellauer.
2017. RTLCheck: Verifying the Memory Consistency of RTL Designs. https:
//github.com/ymanerka/rtlcheck.

[33] Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
2015. CCICheck: Using 𝜇hb Graphs to Verify the Coherence-consistency Interface.
Proceedings of the 48th International Symposium on Microarchitecture (MICRO)

(2015).
[34] Themis Melissaris, Markos Markakis, Kelly Shaw, and Margaret Martonosi. 2020.

PerpLE: Improving the Speed and Effectiveness of Memory Consistency Testing.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO).
[35] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model:

x86-TSO. Proceedings of the 22nd International Conference on Theorem Proving in

Higher Order Logics (TPHOLs) (2009).
[36] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and

Peter Sewell. 2017. Simplifying Arm Concurrency: Multicopy-atomic Axiomatic
and Operational Models for Armv8. ACM Programming Languages (2017).

[37] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,
Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi. 2016.
End-to-End Verification of Arm® Processors with ISA-Formal. In Proceedings of

the 28th International Conference on Computer Aided Verification (CAV).
[38] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.

2011. Understanding POWERMicroprocessors. Proceedings of the 32nd Conference
on Programming Language Design and Implementation (PLDI) (2011).

[39] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. x86-TSO: A Rigorous and Usable Programmer’s Model for
x86 Multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

[40] Tyler Sorensen and Alastair F. Donaldson. 2016. Exposing Errors Related to Weak
Memory in GPU Applications. In Proceedings of the 37th Annual ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). 100–
113.

[41] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. CheckMate:
Automated Synthesis of Hardware Exploits and Security Litmus Tests. Proceedings
of the 51st International Symposium on Microarchitecture (MICRO) (2018).

[42] Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Mar-
garet Martonosi. 2017. TriCheck: Memory Model Verification at the Trisection
of Software, Hardware, and ISA. Proceedings of the 22nd International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS) (2017).
[43] Srikanth Vijayaraghavan and Meyyappan Ramanathan. 2014. A Practical Guide

for SystemVerilog Assertions. Springer Publishing Company, Incorporated.
[44] Andrew Waterman and Krste Asanović (Eds.). 2018. The RISC-V Instruction Set

Manual Volume I: User-level ISA. RISC-V International. Document version 2.2.
[45] John Wickerson, Mark Batty, Tyler Sorensen, and George A Constantinides. 2017.

Automatically comparing memory consistency models. Proceedings of the 44th
Symposium on Principles of Programming Languages (POPL) (2017).

[46] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys: a free Verilog
synthesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics

(Austrochip).
[47] Y. Yang, Ganesh Gopalakrishnan, G. Lindstrom, and K. Slind. 2004. Nemos: a

framework for axiomatic and executable specifications of memory consistency
models. In Proceedings of the 18th International Parallel and Distributed Processing

http://dx.doi.org/10.1007/978-3-642-14295-6_25
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://riscv.org/2017/04/risc-v-memory-consistency-model/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://github.com/ucb-bar/vscale
https://github.com/ymanerka/rtlcheck
https://github.com/ymanerka/rtlcheck


Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Symposium. 31–. A ARTIFACT APPENDIX

A.1 Abstract

This artifact uses rtl2𝜇spec to produce a 𝜇specmodel for the RISC-V multi-
V-scale [29, 31], and COATCheck [25] to conduct formal MCM verification
of the 𝜇spec model with respect to 56 litmus tests [31]. Overall, rtl2𝜇spec
requires two runtime environments:

• rtl2uspecEnv, where rtl2𝜇spec runs as a C++ extension to Yosys
• cadEnv, where Jaspergold is installed and is able to evaluate rtl2𝜇spec-
generated SystemVerilog Assertions (SVAs).

A.2 Artifact check-list (meta-information)

• Data set:

– RISC-V multi-V-scale SystemVerilog design for rtl2𝜇spec to con-
sume as input

– TCL and Python driver scripts to support evaluation of rtl2𝜇spec-
generated SVAs on the multi-V-scale

Data set components can be accessed here: https://github.com/
yaohsiaopid/multicore_vscale_rtl2uspec_ae.git

• Run-time environment:

Running rtl2𝜇spec requires:
– Symbiotic EDA Edition of Yosys

Please contact edmund@symbioticeda.com and
office@symbioticeda.com for academic license.

– Cadence JasperGold
Running the full end-to-end MCM verification case study featured
in this artifact additionally requires:
– COATCheck MCM verification tool (included in container image)
To facilitate artifact evaluation, the compilation and execution en-
vironments for rtl2𝜇spec, including rtl2𝜇spec sources (https://
github.com/yaohsiaopid/rtl2uspec), Yosys, and COATCheck have
been wrapped as a container image: yaohsiao/micro21:v0.2. A run-

time environment where JasperGold has been installed is required in

addition to the container image.

• Output:

Given the multi-V-scale as input, rtl2𝜇spec will produce a 𝜇spec
model, called vscale.uarch, along with performance for various
parts of the synthesis procedure. As a secondary output, COATCheck
will produce qualitative and quantitative MCM verification results
by indicating MCM compliance (not) with sequential consistency
(the multi-V-scale’s MCM) and verification runtimes, respectively.

A.3 Installation

(1) Setup steps forrtl2𝜇spec execution environment. (rtl2uspecEnv)
The below assumes that one has reached out to Symbiotica EDA and
obtained instructions on how to download their software wrapped
in a tar.gz file and a corresponding licence file ends with .lic .
Our artifact submission features a docker image that includes all soft-
ware dependencies, with the exception of JasperGold, and requires
users to provide the software and license file paths as mentioned
(replace <TARGZPATH> and <LICPATH>). Run commands as follow-
ing. The last line should be executed within the container.

$ export SYMBIOTIC=<TARGZPATH>
$ export SYMBIOTIC_LIC=<LICPATH>
$ docker run −itd −−name microtest yaohsiao/micro21:v0.2.3
$ docker cp $SYMBIOTIC microtest:/home/symbiotic_bin.tar.gz
$ docker cp $SYMBIOTIC_LIC microtest:/home/symbiotic.lic
$ docker attach microtest
$ cd /home && . envsetup.sh

This step should end with the following result:
export PATH=/opt/symbiotic−20201202A−serp/bin:$PATH

https://github.com/yaohsiaopid/multicore_vscale_rtl2uspec_ae.git
https://github.com/yaohsiaopid/multicore_vscale_rtl2uspec_ae.git
edmund@symbioticeda.com
office@symbioticeda.com
https://github.com/yaohsiaopid/rtl2uspec
https://github.com/yaohsiaopid/rtl2uspec
yaohsiao/micro21:v0.2


MICRO ’21, October 18–22, 2021, Virtual Event, Greece Hsiao, et al.

export SYMBIOTIC_LICENSE=/home/symbiotic.lic
==================================
[success] yosys path is at /opt/symbiotic−20201202A−serp/bin/yosys
==================================

Path tomulti-V-scale design: /home/multicore_vscale_rtl2uspec
Path to rtl2𝜇spec: /home/rtl2uspec

(2) Setup steps for JasperGold execution environment (cadEnv):
• Confirm that JasperGold can be found in PATH
$ which jc

• Install relevant python3 packages
$ yum install -y python3 && python3 -m pip install
numpy pandas

• Populate the multi-V-scale design
$ git clone https://github.com/yaohsiaopid/

multicore_vscale_rtl2uspec_ae.git multicore_vscale_rtl2uspec &&
mkdir multicore_vscale_rtl2uspec/gensva

A.4 Experiment workflow

(1) Intra-instruction HBI synthesis. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make init && make intra_hbi
• make init: compiles rtl2𝜇spec using source files located in
src_revised. rtl2𝜇spec’s required user-provided design anno-
tations are supplied as a header file, src_revised/design.h.
For example, src_revised/design.h includes design informa-
tion like the instruction fetch register (IFR) signal name, which
is declared as a string type. The value of the IFR string is
the hierarchical name in the RTL design of the state element
that stores instructions when they are first fetched from instruc-
tion memory on a given core. For the multi-V-scale, the IFR
is the core_gen_block[0].vscale.pipeline.inst_DX signal,
and it is instantiated concretely in the multi-V-scale design files
(/home/multicore_vscale_rtl2uspec/src/main/verilog).
The src_revised/design.h header file is also used to specify
which ISA instructions should have their behavior formalized
and included in the final 𝜇spec model. This is done by enu-
merating (opcodes_name, valid_exe_condition) pairs, where
opcodes_name is a string name for an instruction of interest,
and valid_exe_condition describes the how to recognize the
instruction of interest from its binary encoding. Given the focus
of our paper is on extracting 𝜇spec models for conducting MCM
verification, src_revised/design.h specifies two relevant ISA
instructions for the multi-V-scale: sw (appears first, and thus will
be referred to with ID 0 by rtl2𝜇spec) and lw (appears second,
and thus will be referred to with ID 1 by rtl2𝜇spec).

• make intra_hbi: runs CDFG analysis over the Verilog design sup-
plied in script/multicore_yosys_verific.tcl, namely the
multi-V-scale located at /home/multicore_vscale_
rtl2uspec in this artifact evaluation. CDFG analysis identifies
the set of state elements that are reachable from the user-supplied
IFR in the input design’s netlist and generates corresponding
intra-instruction HBI hypotheses in the form of SVAs. These
SVAs are output into the folder build/sva/intra_hbi/. Meta-
data files ever_update_[0-9]+.txt for each instruction type
list relevant state elements to be consider for inclusion in the
instruction’s execution path, pending the outcome of SVA evalu-
ation. SVAs corresponding to an instruction metadata file can be
found in a ever_update_[0-9]+.sv file with the same integer
ID. These integer IDs match the order in which instructions were
enumerated in the
src_revised/design.h file. The result should be
build/sva/intra_hbi/
|−− ever_update_0.sv

|−− ever_update_1.sv
`−− .... several other files

(2) Intra-instruction HBI hypothesis evaluation.

• Copy the folder /home/rtl2uspec/build/sva/intra_hbi/ in
rtl2uspecEnv to cadEnv under
multicore_vscale_rtl2uspec/gensva/.

• Evaluate SVAs in cadEnv:
$ python3 revised_script/intra_hbi.py
The script invokes JasperGold to evaluate the SVA files in the
folder and, based on the results (proven/cex), generates a modified
version ofmeta data ever_update_[0-9]+.txt, called ever_update_[0-9]+.txt.res.
ever_update_[0-9]+.txt.res features a new field for each row
(updated/fixed), which indicates whether the instruction of in-
terest (denoted by the file ID) does/does not update the state
element of interest (denoted by a row of the file).
Upon termination of SVA evaluation, the script prints out total
number of SVAs evaluated and the total runtime, which should

match the first two rows of the Intra-Instr. column in Fig. 5

in the paper

==================================================
Total time on intra−instruction HBI (sec) : 271.063000
Total number of SVA evaluated: 105
==================================================

• Copy the folder multicore_vscale_rtl2uspec/gensva/intra_hbi
from cadEnv back to rtl2uspecEnv to replace original folder
/home/rtl2uspec/build/sva/intra_hbi/ so that rtl2uspecEnv
has the updated metadata files.

(3) Inter-instruction HBI synthesis. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make inter_hbi
Based on the results from previous step (intra-instruction HBI eval-
uation), this step deduces per-instruction DFGs, and iterates over
all pairs of per-instructions DFGs to generate all inter-instruction
hypotheses. The result of inter-instruction HBI synthesis will be
stored in build/sva/inter_hbi/ and be structured as follows:
gensva/
|−− inter_hbi
| |−− 0.sv
| |−− 1.sv
|−− |−− .... several other files
| |−− hbi_meta.txt
| `−− hbi_meta.txt.detail
`−− intra_hbi

|−− .... several other files

hbi_meta.txt.detail contains a list of all generated inter-instruction
HBI hypotheses (one per row) that will be evaluated along with their
corresponding SVA file (in the file_# field of the list). For example,
one of the rows in hbi_meta.txt.detail should look like the fol-
lowing to indicate this hypothesis is validated by the SVA contained
in 0.sv.
file_#,hbi_type,samecore,i0_type,i1_type,i0_loc,i1_loc,...
0,0,1,0,0,core_gen_block[0].vscale.pipeline.ctrl....

hbi_meta.txt contains metadata pertaining to all unique SVAs that
will be used to validate all inter-instruction HBI hypotheses.

(4) Inter-instruction HBI hypothesis evaluation.

• Copy the folder /home/rtl2uspec/build/sva/inter_hbi/ in
rtl2uspecEnv to cadEnv under
multicore_vscale_rtl2uspec/gensva/.

• Evaluate SVAs cadEnv:
$ python3 revised_script/inter_hbi.py
As in intra-instruction HBI evaluation, this script invokes Jasper-
Gold for each SVA files in the inter_hbi/. Based on the re-
sults (proven/cex) a modified version of hbi_meta.txt, called



Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations MICRO ’21, October 18–22, 2021, Virtual Event, Greece

hbi_meta.txt.res, is generated, which includes a new field for
each row (updated/fixed). As before, the script prints out total
number of SVAs evaluated and the total runtime, which should

match to first two rows of the Inter-Instr. column of Fig. 5

in the paper.

==============================================
(Spatial)| (Temporal)| Dataflow|

cnt 1| 12| 2|
time 5.347000| 31.632000| 15.801000|
==============================================

• Copy the folder multicore_vscale_rtl2uspec/gensva/
inter_hbi from cadEnv back to /home/rtl2uspec/build/
sva/inter_hbi/ in rtl2uspecEnv. rtl2uspecEnv should now
have new files, namely
/home/rtl2uspec/build/sva/inter_hbi/hbi_meta.txt.res

(5) 𝜇spec generation. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make uspec .
This pass aggregates the results from previous steps, merges state
elements having the same ordering behaviors into “mega-nodes,”
and generates the final 𝜇spec model, named vscale.uarch. The
mega-nodes will be instantiated as single nodes during instruction
execution path enumeration in the 𝜇spec model (as in the Axiom
"intra_Write" 𝜇spec axiom below, which captures the execution
path of RISC-V sw instructions on the V-scale). Part of this pass also
includes a syntatic translation of the proven HBI hypotheses to the
𝜇spec DSL. An excerpt of the 𝜇spec model generated by our artifact
evaluation is included below for reference.
StageName 0 "IF_".
StageName 1 "mgnode_2".
StageName 2 "mgnode_0".

StageName 3 "hasti_mem_mem".
StageName 4 "mgnode_3".
StageName 5 "mgnode_1".

% ProgramOrder
Axiom "PO_man": forall microop "i1", forall microop "i2",
SameCore i1 i2 => ProgramOrder i1 i2 => AddEdge ((i1, IF_), (i2, IF_),

"PO", "orange").

A.5 Evaluation and expected results

Our artifact evaluates the synthesized 𝜇spec model against a suite of litmus
tests using the COATCheck MCM verification tool. In rtl2uspecEnv,
$ cd /home/rtl2uspec && make eval_uspec
This step obtains a suite of litmus tests [31] to evaluate compliance of a 𝜇spec
model with Sequential Consistency (the MCM of the multi-V-scale). It then
uses COATCheck to evaluate the rtl2𝜇spec-generated 𝜇specmodel against
these same litmus tests. An example of the results that should be generated
are shown below. Each row features the name of a litmus test and the
runtime (ms). Runtimes correspond to blue performance bars Fig. 6 of

the paper. The final line of output should also indicate that none of

the litmus tests fail to execute in a Sequentially Consistent manner,
indicating that COATCheck has proven the multi-V-scale to implement
Sequential Consistency with respect to the litmus tests considered.
.....
safe027.test,29.083897
safe029.test,16.207506
safe030.test,22.950519
sb.test,11.006003
ssl.test,16.676122
wrc.test,23.565418
−−− 1379.073456 ms −−−
======= ALL TESTS PASSES =======


	Abstract
	1 Introduction
	2 Background
	3 A Taxonomy for Constructing Complete spec Models
	3.1 Happens-Before Invariants
	3.2 Intra-Instruction HBIs
	3.3 Inter-Instruction HBIs

	4 Synthesizing spec from RTL
	4.1 RTL to Full-Design Data Flow Graphs
	4.2 Synthesizing Intra-Instruction HBIs
	4.3 Synthesizing Inter-Instruction HBIs
	4.4 From Validated HBIs to a spec Model

	5 Case Study
	5.1 The RISC-V multi-V-scale
	5.2 Verifying the multi-V-scale's MCM

	6 Results
	6.1 Bug Discovered in the multi-V-scale
	6.2 rtl2spec Performance Breakdown
	6.3 Performance and Proof Coverage
	6.4 rtl2spec Scope

	7 Related Work and Conclusions
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected results


