
Scalable Assurance via Verifiable Hardware-Software Contracts
Yao Hsiao Dominic P. Mulligan* Nikos Nikoleris* Gustavo Petri* Caroline Trippel

Stanford University *Arm Research
{yaohsiao, trippel}@stanford.edu {dominic.mulligan, nikos.nikoleris, gustavo.petri}@arm.com

I. INTRODUCTION

The correctness, reliability, and security of modern software
depends on the hardware on which it is run. Thus, it is essential
that hardware designers (1) expose relevant implementation
details to software developers via hardware-software con-
tracts, and (2) ensure, ideally through formal proof, that said
contracts are indeed upheld by fabricated microarchitectures.

II. BACKGROUND & MOTIVATION

Hardware-Software Contracts: The canonical hardware-
software contract is the instruction set architecture (ISA),
which defines software-visible hardware state and a set of
instructions which manipulate it. This simple notion of an
ISA [2] served us well until the era of multi-core architectures.
Notably, shared memory parallelism, combined with single-
core optimizations that reorder and buffer instructions, gave
rise to memory consistency models (MCMs) [18]—contracts
which expose hardware ordering behaviors to software.

Another architecture trend exhibits challenges similar to
those addressed by MCMs. Specifically, modern hardware
is generally shared by many applications and contains an
abundance of state that is read from and written to on these
applications’ behalf. This shared hardware state in combi-
nation with various data-dependent optimizations means that
programs can interact and leak data that they process in
unintended ways [39]. To address this issue, formal security
contracts have gained traction among researchers as a way for
hardware architects to expose security-critical implementation
details—like those relevant for reasoning about microarchitec-
tural leakage—to software [26, 25, 11, 14, 16, 15, 8, 38, 9].

The Hardware Assurance Challenge: Formal hardware-
software contracts, including security contracts, are a promis-
ing way to encode assurance/certification requirements for
hardware in a way that supports correct and secure software
design. For example, a large body of work has produced
formally specified MCMs for a variety of ISAs [35, 29, 1, 31,
28, 40] and high-level programming languages [23, 6, 30, 5, 3,
27], supporting the design of verified compilers [5, 4, 32, 20,
34, 30, 33, 37, 36]. Recent work also demonstrates that formal
security contracts can support automated analysis tools which
find [26, 15, 8, 10] and repair [26] microarchitectural leakage
in programs. Unfortunately, despite their established benefits
for software, a significant gap remains between existing formal
contracts and the hardware designs they abstract.

Our goal is to devise techniques for synthesizing formal
hardware-software contracts directly from hardware RTL.

III. SYNTHESIZING MEMORY MODEL SPECIFICATIONS

A scalable, efficient, sound, and complete methodology
for verifying processor MCM implementations has remained
elusive due to modern design complexity. The closest ap-
proach, embodied in the Check tools [24], formally checks
that a specific microarchitecture in the guise of a manually
constructed axiomatic specification, called a µSPEC model,
correctly implements an MCM.

Our recent work presents the only methodology and tool,
RTL2µSPEC1, which supports formally verifying the correct-
ness of MCM implementations down to RTL [17]. Specifi-
cally, RTL2µSPEC enables the Check tools to consume pro-
cessor RTL directly by automatically synthesizing µSPEC
models from (System)Verilog implementations. We show that
RTL2µSPEC can synthesize a complete, and proven correct,
µSPEC model from the SystemVerilog design of the four-core
open source RISC-V V-scale processor [21] in 6.84 minutes.
Subsequent Check-based MCM verification of the synthesized
µSPEC model takes on the order of seconds. Notably, prior
work timed out out after 11 hours of runtime when attempting
to verify the MCM of the same microarchitecture [22].

IV. SYNTHESIZING TRANSMITTER SPECIFICATIONS

Our current work extends RTL2µSPEC to synthesize security
contracts from RTL. Simply put, our goal is to automatically
discover the transmit instructions (or transmitters) [19, 41]
of a microarchitecture. Transmitters are instructions which
leak their results, operands, or even data at rest in hardware
structures [39] via their variable usage of hardware resources
(often via timing channels). We call our new methodology and
tool TRANSMITSYNTH.

In adapting RTL2µSPEC to discover transmitters, we rely on
the following observation: if an instruction is a transmitter it
must be able to exhibit (observably) distinct microarchitectural
execution paths. A microarchitectural execution path is a set of
state elements that an instruction updates during its execution
and a partial order on said state updates. For example, a load
instruction might exhibit one execution path where it updates
the data field of an L1 cache block (a cache miss) and another
where it does not (a cache hit).

RTL2µSPEC’s procedure for synthesizing µSPEC models
from RTL lays the foundation for RLT transmitter discovery.
In essence, µSPEC models are first-order logic (FOL) ordering
specifications of a microarchitecture. They are composed of a
set of axioms that describe how each legal hardware instruction

1RTL2µSPEC is open source at https://github.com/yaohsiaopid/rtl2uspec

1



(1) flows through the microarchitecture during its execution,
with respect to which state elements it updates in which (par-
tial) order (i.e., a microarchitectural execution path), and (2)
interacts with other in-flight instructions during its execution
via structural or data-flow dependencies. The Check tools
use µSPEC models to reason about each possible execution
of a progarm on a microarchitecture as a directed acyclic
graph, called a µhb graph. Nodes in a µhb graph represent
hardware events—namely, an instruction updating a particular
state element during its execution; directed edges represent
happens-before relationships between events. Fig. 1 shows
three enhanced µhb graphs (featuring edge labels) which each
represent an execution path of a single instruction.

RTL2µSPEC combines static analysis of an RTL netlist
with SystemVerilog Assertion (SVA) property generation and
verification. At a high level, it analyzes a netlist to synthesize
SVAs corresponding to an over-approximation of all axioms
that should be included in the final µSPEC model. Those which
are proven—we use the JasperGold property verifier [7]—are
retained and syntactically translated to the µSPEC DSL; those
which are dis-proven (via counterexamples) are discarded.

While RTL2µSPEC can synthesize a microarchitectural ex-
ecution path for an instruction, it faces a key limitation:
synthesizing multiple distinct execution paths for the same
instruction is not supported. RTL2µSPEC implicitly assumes
that all instructions in the input design can only exhibit a
single microarchitectural execution path (the single execution
path assumption [17]). This restriction is fundamentally at
odds with transmitter synthesis. Plus, it precludes analysis of
processor designs with advanced features like speculation, out-
of-order execution, bypassing, and multiple execution lanes.

Our TRANSMITSYNTH prototype removes RTL2µSPEC’s
single execution path assumption and successfully analyzes the
DIV instruction on the open source RISC-V CVA6 processor
core [42]—a 64-bit, 6-stage single issue RISC-V core with
out-of-order write-back for each functional unit, which is 12.6x
larger than the V-Scale.

V. TRANSMITSYNTH

We now describe TRANSMITSYNTH, which also combines
static netlist analysis with SVA generation and verification.

Multiple Execution Graphs: For a given instruction under
verification, TRANSMITSYNTH must synthesize the set of mi-
croarchitectural execution paths it may exhibit. To do so, it first
determines which Performing Locations (PLs) the instruction
may visit during its execution. A PL is a collection of state,
which holds metadata corresponding to a single instruction
(e.g., an instruction PC or other identifier) while the instruction
“performs” state updates in a particular region of the design.
In an in-order pipeline, PLs are pipeline stages.

At present, PLs are identified in the input design with the
help of user-provided design metatdata. TRANSMITSYNTH
then automatically derives which PLs an instruction may visit
in any legal execution and the partial order on which they
are visited. Fig. 1 shows three sets of PLs (denoted by each
of the three columns) that may be visited by a RISC-V DIV

Figure 1. CVA6 DIV exhibits 66 execution paths

instruction on CVA6. TRANSMITSYNTH generates two classes
of specialized SVAs to derive these sets efficiently.

Happens-Before Latency: The different sets of PLs that
an instruction can visit during its execution constitute one
dimension of execution variability—one that manifests as
distinct µhb graph nodes and edges. Another dimension results
from the fact than an instruction may reside in a given PL for
a variable number of cycles—one that we represent with a
set of weights for µhb edges. An edge weight of {0, 1,
..., 63} in Fig. 1 indicates a 0, 1, ..., or 64 cycle happens-
before latency. Edges without labels are implicitly labeled {1}.
TRANSMITSYNTH leverages an iterative SVA generation and
verification procedure to enumerate all possible wights for all
µhb edges.

Characterizing Leakage: Transmitters may leak some
function of: 1) their operands, 2) architectural data at rest,
3) microarchitectural data at rest, 4) structural resource con-
tention. TRANSMITSYNTH’s procedure for synthesizing dis-
tinct µhb graph structures (based on sets of visited PLs) can
be restricted in order to coarsely categorize transmitters. For
example, to identify transmitters which may leak a function
of their operands and/or architectural data at rest, TRANS-
MITSYNTH can use a non-interference assumption, which
requires that: (1) only one valid instruction, the instruction
under verification, is issued after reset, and (2) architectural
state (memory and registers) are initialized with symbolic
values. We are extending TRANSMITSYNTH to supporting this
broader space of transmitter categories.

Conclusions: When evaluating the CVA6 DIV instruction,
under our non-interference assumption, TRANSMITSYNTH
discovers 66 execution paths (Fig. 1) in 96 minutes of serial
(but parallelizable) execution time. Three sets of PLs are
identified, while one exhibits a variety of µhb edge latencies.
TRANSMITSYNTH is the only tool [12, 13] that can enumer-
ate a transmitter’s execution paths. We plan to conduct fine-
grained analysis of what transmitters leak in our next steps.



REFERENCES

[1] Jade Alglave, Luc Maranget, and Michael Tautschnig.
“Herding Cats: Modelling, Simulation, Testing, and
Data Mining for Weak Memory”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS)
36.2 (2014), 7:1–7:74.

[2] Gene M. Amdahl, Gerrit A. Blaauw, and Frederick P.
Brooks. “Architecture of the IBM System/360”. In: IBM
Journal of Research and Development (1964).

[3] Mark Batty, Alastair F. Donaldson, and John Wickerson.
“Overhauling SC Atomics in C11 and OpenCL”. In:
43rd Symposium on Principles of Programming Lan-
guages (POPL) (2016).

[4] Mark Batty et al. “Clarifying and Compiling C/C++
Concurrency: From C++11 to POWER”. In: 39th
Symposium on Principles of Programming Languages
(POPL) (2012).

[5] Mark Batty et al. “Mathematizing C++ Concurrency”.
In: 38th Symposium on Principles of Programming
Languages (POPL) (2011).

[6] Hans-J. Boehm and Sarita V. Adve. “Foundations of
the C++ Concurrency Memory Model”. In: 29th Con-
ference on Programming Language Design and Imple-
mentation (PLDI) (2008).

[7] Cadence Design Systems, Inc. Cadence JasperGold
formal verification platform. Accessed 12th April 2021.
URL: https : / /www.cadence .com/en US/home/ tools /
system - design - and - verification / formal - and - static -
verification/jasper-gold-verification-platform.html.

[8] Sunjay Cauligi et al. “Constant-Time Foundations for
the New Spectre Era”. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation. 2020.

[9] Kevin Cheang et al. “A Formal Approach to Secure
Speculation”. In: 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF). 2019.

[10] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk.
“Hunting the Haunter - Efficient Relational Symbolic
Execution for Spectre with Haunted RelSE”. In: 28th
Annual Network and Distributed System Security Sym-
posium, NDSS 2021, virtually, February 21-25, 2021.
2021.

[11] Craig Disselkoen et al. “The Code That Never Ran:
Modeling Attacks on Speculative Evaluation”. In: 2019
IEEE Symposium on Security and Privacy (SP). 2019.

[12] Klaus v. Gleissenthall et al. “IODINE: Verifying
Constant-Time Execution of Hardware”. In: 28th
USENIX Security Symposium (USENIX Security 19).
2019.

[13] Klaus v. Gleissenthall et al. “Solver-Aided Constant-
Time Hardware Verification”. In: Proceedings of the
2021 ACM SIGSAC Conference on Computer and Com-
munications Security. 2021.

[14] Roberto Guanciale, Musard Balliu, and Mads Dam. “In-
Spectre: Breaking and Fixing Microarchitectural Vul-

nerabilities by Formal Analysis”. In: Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 2020.

[15] M. Guarnieri et al. “Spectector: Principled Detection of
Speculative Information Flows”. In: 2020 IEEE Sympo-
sium on Security and Privacy (SP). 2020.

[16] Marco Guarnieri et al. “Hardware-Software Contracts
for Secure Speculation”. In: 2021 IEEE Symposium on
Security and Privacy. 2021.

[17] Yao Hsiao et al. “Synthesizing Formal Models of Hard-
ware from RTL for Efficient Verification of Memory
Model Implementations”. In: Proceedings of the Fifty-
Fourth IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO 54. 2021.

[18] IBM. IBM System/370 Principles of Operation. 1983.
[19] Vladimir Kiriansky et al. “DAWG: A Defense Against

Cache Timing Attacks in Speculative Execution Proces-
sors”. In: 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2018.

[20] Ori Lahav et al. “Repairing Sequential Consistency
in C/C++11”. In: 38th Conference on Programming
Language Design and Implementation (PLDI) (2017).

[21] Albert Magyar. A Verilog implementation of the RISC-
V Z-scale microprocessor. https://github.com/ucb-bar/
vscale. 2016.

[22] Yatin A. Manerkar et al. “RTLCheck: Verifying the
Memory Consistency of RTL Designs”. In: Proceedings
of the 50th International Symposium on Microarchitec-
ture (MICRO) (2017).

[23] Jeremy Manson, William Pugh, and Sarita Adve. “The
Java Memory Model”. In: 32nd Symposium on Princi-
ples of Programming Languages (POPL) (2005).

[24] Margaret Martonosi et al. Check: Research Tools and
Papers. http://check.cs.princeton.edu. 2017.

[25] Ross Mcilroy et al. Spectre is here to stay: An analysis
of side-channels and speculative execution. 2019. URL:
https://arxiv.org/abs/1902.05178.

[26] Nicholas Mosier et al. “Axiomatic Hardware-Software
Contracts for Security”. In: ISCA’22.

[27] Kyndylan Nienhuis, Kayvan Memarian, and Peter
Sewell. “An Operational Semantics for C/C++11 Con-
currency”. In: 31st International Conference on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA) (2016).

[28] NVIDIA. Parallel Thread Execution ISA Version 6.0.
http://docs.nvidia.com/cuda/parallel- thread-execution/
index.html. 2017.

[29] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Bet-
ter x86 Memory Model: x86-TSO”. In: Proceedings of
the 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs) (2009).

[30] Gustavo Petri, Jan Vitek, and Suresh Jagannathan.
“Cooking the books: Formalizing JMM implementation
recipes”. In: 29th European Conference on Object-
Oriented Programming (ECOOP) (2015).

https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://github.com/ucb-bar/vscale
https://github.com/ucb-bar/vscale
http://check.cs.princeton.edu
https://arxiv.org/abs/1902.05178
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html


[31] Christopher Pulte et al. “Simplifying Arm Concurrency:
Multicopy-atomic Axiomatic and Operational Models
for Armv8”. In: ACM Programming Languages (2017).

[32] Susmit Sarkar et al. “Synchronising C/C++ and
POWER”. In: 33rd Conference on Programming Lan-
guage Design and Implementation (PLDI) (2012).

[33] Jaroslav Ševčık and David Aspinall. “On Validity of
Program Transformations in the Java Memory Model”.
In: Proceedings of the 22Nd European Conference on
Object-Oriented Programming. ECOOP ’08 (2008).

[34] Peter Sewell. “C/C++11 mappings to processors”. In:
(2016). URL: https://www.cl.cam.ac.uk/∼pes20/cpp/
cpp0xmappings.html.

[35] Daniel Sorin, Mark Hill, and David Wood. A Primer
on Memory Consistency and Cache Coherence. Ed. by
Mark Hill. Synthesis Lectures on Computer Architec-
ture. Morgan and Claypool Publishers, 2011.

[36] Viktor Vafeiadis and Chinmay Narayan. “Relaxed Sep-
aration Logic: A Program Logic for C11 Concur-
rency”. In: 28th International Conference on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA) (2013).

[37] Viktor Vafeiadis et al. “Common Compiler Optimi-
sations Are Invalid in the C11 Memory Model and
What We Can Do About It”. In: 42nd Symposium on
Principles of Programming Languages (POPL) (2015).

[38] Marco Vassena et al. “Automatically Eliminating Spec-
ulative Leaks from Cryptographic Code with Blade”.
In: Proc. ACM Program. Lang. (2021).

[39] Jose Vicarte et al. “Opening Pandora’s Box: A System-
atic Study of New Ways Microarchitecture Can Leak
Private Data”. In: ISCA’21.

[40] Andrew Waterman and Krste Asanović. The RISC-V
Instruction Set Manual, Volume I: Unprivileged ISA
Document, Version 20190608-Base-Ratified. Tech. rep.
SiFive Inc. and CS Division, EECS Department, Uni-
versity of California, Berkeley, June 2019. URL: https:
//riscv.org/specifications/.

[41] Jiyong Yu et al. “Speculative Taint Tracking (STT): A
Comprehensive Protection for Speculatively Accessed
Data”. In: Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture. 2019.

[42] Florian Zaruba and Luca Benini. “The cost of
application-class processing: Energy and performance
analysis of a Linux-ready 1.7-GHz 64-bit RISC-V core
in 22-nm FDSOI technology”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 27.11
(2019), pp. 2629–2640.

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://riscv.org/specifications/
https://riscv.org/specifications/

	Introduction
	Background & Motivation
	Synthesizing Memory Model Specifications
	Synthesizing Transmitter Specifications
	TransmitSynth

