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Abstract—The Check tools automate formal memory consis-
tency model and security verification of processors by analyzing
abstract models of microarchitectures, called µSPEC models.
Despite the efficacy of this approach, a verification gap between
µSPEC models, which must be manually written, and RTL
limits the Check tools’ broad adoption. Our prior work, called
RTL2µSPEC, narrows this gap by automatically synthesizing
formally verified µSPEC models from SystemVerilog implemen-
tations of simple processors. But, RTL2µSPEC assumes input
designs where an instruction (e.g., a load) cannot exhibit more
than one microarchitectural execution path (µPATH, e.g., a cache
hit or miss path)—its single-execution-path assumption.

In this paper, we first propose an automated approach and
tool, called RTL2MµPATH, that resolves RTL2µSPEC’s single-
execution-path assumption. Given a SystemVerilog processor
design, instruction encodings, and modest design metadata,
RTL2MµPATH finds a complete set of formally verified µPATHs
for each instruction. Next, we make an important observation:
an instruction that can exhibit more than one µPATH strongly
indicates the presence of a microarchitectural side channel in
the input design. Based on this observation, we then propose
an automated approach and tool, called SYNTHLC, that extends
RTL2MµPATH with a symbolic information flow analysis to sup-
port synthesizing a variety of formally verified leakage contracts
from SystemVerilog processor designs. Leakage contracts are
foundational to state-of-the-art defenses against hardware side-
channel attacks. SYNTHLC is the first automated methodology for
formally verifying hardware adherence to them.

I. INTRODUCTION

A common strategy to improve the efficacy of a formal
verification procedure is to analyze an abstract model of the
target system, which omits irrelevant design details [27], [52],
[64]. This approach is exemplified by the Check tools [63],
which automate formal memory consistency model [55]–[59],
[82] and security [80] verification of processors.

At their core, the Check tools conduct microarchitectural
happens-before (µHB) analysis [55], which models hardware-
specific program executions as directed µHB graphs (Fig. 1).
A node in a µHB graph represents a microarchitectural event,
such as a dynamic program instruction (column label) updating
a particular set of hardware state elements (row label) [46].
Directed edges denote happens-before relationships [51].

*Work done while at Arm.

To facilitate µHB analysis, the Check tools analyze a mi-
croarchitecture in the guise of an axiomatic µSPEC model—an
abstract model of a microarchitecture, which omits irrelevant
RTL details [56]. In particular, a µSPEC model is a set of
first-order logic axioms (rules) that describe how to construct
µHB graphs to model hardware-specific program executions.
Axioms encode (i) all microarchitectural execution paths
(µPATHs—our term) for each implemented instruction, to
instantiate column-wise nodes/edges (as in Fig. 1) and (ii) all
possible microarchitectural dependencies between pairs of ex-
ecuted instructions, to instantiate edges between columns [46].

Despite finding bugs in real hardware [55], [60], [80]–
[82], the Check tools have not achieved broad adoption due
to a verification gap between µSPEC models, which must be
manually written, and RTL.

Our prior work narrows this gap via an automated ap-
proach and tool, called RTL2µSPEC, for synthesizing formally
verified µSPEC models from simple SystemVerilog processor
designs [46]. However, RTL2µSPEC possesses a critical limita-
tion: it cannot discover more than one µPATH per implemented
instruction. Hence, designs where instructions may exhibit
more than one µPATH are not supported—the single-execution-
path assumption [46]. This restriction is incompatible with
pervasive hardware features like: caches, which create hit and
miss paths for memory instructions; variable-time functional
units (e.g., serial dividers), which create a few to many path
possibilities for certain instructions; speculation, which creates
commit and squash paths for virtually all instructions; and
multiple copies of the same functional unit, where certain
instructions may take a path that uses any one of the units. We
further show that it precludes designs with microarchitectural
side channels, making RTL2µSPEC-synthesized µSPEC models
useless for Check-based hardware security verification [80].

A. This Paper

This paper makes three key contributions.
Foundation: Synthesizing Microarchitectural Execution

Paths: Our first contribution is an automated approach and
tool, called RTL2MµPATH, that resolves RTL2µSPEC’s single-
execution-path assumption. Given a SystemVerilog processor
design, instruction encodings, and modest (mostly standard)
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design metadata, RTL2MµPATH uses static netlist analysis,
linear temporal logic (LTL) [62], [72] property generation
(from property templates), and model checking [15], [28] to
find a complete set of formally verified µPATHs (µHB graph
columns) for each instruction. Automated µPATH synthesis
with RTL2MµPATH is enabled by two key aspects of its design.

First, we extend the µHB graph formalism from prior work
with cycle-accurate timing information. In this paper, a µHB
node represents an instruction updating a particular set of
hardware state elements in a specific cycle; edges encode one-
cycle happens-before relationships. Cycle-accurate µPATHs
enable RTL2MµPATH to distinguish executions where the same
set of state elements is updated a different number of times.

Second, RTL2MµPATH recognizes a µHB node during an
instruction’s execution on a microarchitecture when the in-
struction visits (i.e., occupies) a particular performing location
(PL) in a given cycle. Similar to a pipeline stage, but more
granular, a PL represents a step of an instruction’s execution
during which it has exclusive write access to a particular subset
of design states. That is, PLs encapsulate instructions’ state
updates per cycle. We show that PLs are precisely captured
by certain finite state machines within a processor’s control-
path (§III-C). By conceptualizing µHB nodes as instructions’
visits to PLs, RTL2MµPATH supports speculative, superscalar,
and out-of-order pipelines, plus caches.

Observation: Security Implications of µPATH Variability:
In designing RTL2MµPATH, we make an important observation
about how programs leak their private data in hardware side-
channel attacks. Briefly, these attacks are often defined using
a telecommunications analogy [48]: a transmit instruction
(or transmitter, in the victim program) modulates a channel
(hardware resource) in an operand-dependent manner, and a
receiver (attacker) observes the channel modulation to infer
the operand value [48]. We observe that:

Observation I: When a transmitter modulates a chan-
nel in an operand-dependent manner, it creates operand-
dependent µPATH variability (>1 µPATH) for one or more
transponder instructions (or transponders—our term). A
receiver observes a transmitter’s distinct channel modula-
tions as distinct µPATHs for transponder(s).

As an example, consider Fig. 1, which shows two µPATHs
for a 32-bit multiply (MUL) instruction executing on CVA6-
MUL, a variant of the RISC-V CVA6 CPU [100] that imple-
ments the zero-skip multiply optimization [10], [12], [40]. On
this design, a MUL will spend one cycle in the multiplication
unit if it has at least one zero operand; else, it will spend four
cycles [12]. Such a MUL is a transmitter [88]: it occupies a
hardware resource for an operand-dependent number of cycles.

Clearly, a MUL creates µPATH variability for itself: it may
visit mulU, the multiplication unit PL, for one (µPATH 0) or
four (µPATH 1) consecutive cycles. More subtly, a MUL may
create multiple µPATHs for subsequent (in program order),
concurrently in-flight instructions, which may stall behind the
MUL for one to five cycles before committing (after complet-
ing). So, MUL transmitters implicate themselves and younger,

Fig. 1: Two µPATHs for MUL on CVA6-MUL (§I-A) and a leakage
signature, which defines transponder MUL’s µPATH variability as a
function of its own operands following its visit to the mulU PL.
Row(1/l): 1st/l-th visit to Row. Node label: value of l for the µPATH.

concurrent instructions as transponders. A receiver observes a
MUL’s distinct channel modulations as distinct µPATHs (e.g.,
with distinct latencies) for any of its transponders.

Observation I captures all instances of operand-dependent
hardware resource usage (§V-C2), including prior notions such
as implicit branches [99], e.g., conditional cache accesses for
loads (µPATH variability) that arise due to store and load
address-dependent store-to-load forwarding. Thus, our second
contribution is augmenting the aforementioned telecommuni-
cations analogy with the notion of a transponder.

Application: Synthesizing Leakage Contracts: Observa-
tion I also inspires our third contribution: an open-source [1]
automated approach and tool, called SYNTHLC, which ex-
tends RTL2MµPATH with a symbolic information flow analysis
to support synthesizing a variety of formally verified microar-
chitectural leakage contracts from SystemVerilog processor
designs. Leakage contracts are foundational to hardware side-
channel defenses, implemented in software [25], [35], [67],
[68], [87], [101] or hardware [16], [20], [26], [53], [76],
[97]–[99]. SYNTHLC is the first automated methodology for
formally verifying hardware adherence to them.

Specifically, SYNTHLC synthesizes a complete set of for-
mally verified microarchitectural leakage signatures from pro-
cessor RTL. Leakage signatures are a novel formalism that
we introduce to capture all relevant features of state-of-the-art
leakage contracts, which are not already captured by µPATHs.
They are effectively function signatures, which characterize
how one or more transmitters create operand-dependent µPATH
variability for a transponder with respect to (i.e., following)
some step (PL) of the transponder’s execution. Fig. 1 depicts a
leakage signature, which defines how a MUL transmitter creates
µPATH variability for itself (it is also a transponder) as a
function of its operands, following its mulU execution step.

From µPATHs and leakage signatures, a variety of formally
verified leakage contracts can be easily derived. The canonical
constant-time (CT) contract, which enumerates a microarchi-
tecture’s transmitters and their unsafe operands [3], [11], [47],
is captured by the inputs to the leakage signature in Fig. 1.
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Overall, SYNTHLC supports synthesizing six different leakage
contracts from SystemVerilog processor designs (Table I):
CT contracts plus five bespoke leakage contracts from the
literature. Collectively, these contracts support two software
defenses—the CT programming defense [25], [35] and the
speculative constant-time (SCT) programming defense [67],
[68], [87], [101]—and eight hardware defenses [16], [20], [26],
[53], [76], [97]–[99] against hardware side-channel attacks.

Case Study: Deploying SYNTHLC on a Processor Core
and Cache: We deploy SYNTHLC on the RISC-V CVA6
core [100], surfacing 94 unique leakage signatures, 72
transponders, and 26 transmitters. Compared to prior work
that analyzes the same design [31], [32], SYNTHLC finds a
novel channel that leaks store and load address operands.

We separately deploy SYNTHLC on the CVA6 L1 data
cache and cache controller, making it the first leakage contract
verification procedure to analyze a realistic processor cache.
Beyond uncovering various hardware side channels, our cache
experiment showcases the performance and scalability benefits
of converting SYNTHLC into a modular procedure.

II. BACKGROUND

This section gives an informal overview of hardware side-
channel attacks (§II-A) and defenses (§II-B), including de-
scriptions of six leakage contracts whose implementation in
hardware can be formally verified with SYNTHLC.

A. Hardware Side-Channel Attacks

In this paper, we study hardware side-channel attacks where
a transmit instruction (or transmitter, in the victim program)
modulates a channel (hardware resource) in an operand-
dependent manner, and a receiver (attacker) observes the chan-
nel modulation to infer the operand value [48]. We highlight
standard assumptions for channels and receivers below.

Characterizing Channels: Many hardware resources have
been implicated as channels, e.g., caches [70], [95], [96],
branch predictors [8], [37], functional units [10], [40], memory
ports [9], and more [39], [65], [71], [88]–[90], [93], [94].
Owing to the circumstantial nature of leakage due to particular
channels [4], [30], prior work informally classifies them as
stateless or stateful [4]. Stateless channel modulations are
observable only in very narrow, specific time windows, usually
requiring the receiver to be running at the same time as the
victim, e.g., a victim may create memory port contention for
a receiver during a victim memory access. Stateful channels
may be observed long after they are modulated, e.g., a victim
cache access may create a cache miss for a receiver far in the
future. We refer to stateless/stateful channels as dynamic/static
to denote formal definitions that we introduce (§IV-C).

Receiver Assumptions: Hardware side-channel attacks
and defenses are studied under specific receiver assumptions,
consisting of an observer model and attacker strategy.

An observer model defines how channel modulations man-
ifest as observations for a specific receiver. Informally, they
may be perceived via their (measurable) effects on certain non-
deterministic aspects of program execution, e.g., execution

time [18], [41], [70], resource contention [8]–[10], [39], [65],
[71], [93], and so on [14], [44], [50], [61], [74], [84].

An attacker strategy specifies whether the receiver may
passively or actively monitor victim channel modulations [19],
[30], [79], [88]. In a passive attack, the receiver monitors
victim channel modulations without explicitly interfering with
the victim’s execution, e.g., by measuring victim execution
time. In an active attack, the receiver explicitly interacts
with the channel modulated by the victim, e.g., by priming
and probing shared cache state. The notion of a transponder
enables defining both strategies formally (§IV-C).

B. Hardware Side-Channel Defenses & Leakage Contracts

The goal of a hardware side-channel defense is to ensure
that a specific victim program running on a particular mi-
croarchitecture will not leak its private data to some receiver
via hardware side channels. Towards this goal, state-of-the-art
defenses assume the availability of microarchitectural leakage
contracts, which characterize implementations’ transmitters.

The Canonical Leakage Contract: The most widely-
adopted leakage contract, the constant-time (CT) contract,
enumerates a microarchitecture’s transmitters and their unsafe
(“leaky”) operands. Nascent ISA leakage contracts fall into
this category [3], [11], [47]. Given a CT contract, a hardware
side-channel defense can ensure that secrets never reach the
unsafe operands of transmitters when programs execute. This
strategy is embodied in the CT programming defense [25],
[35], the gold standard software defense for protecting the ar-
chitectural executions of cryptopgraphic code [29], [69], [83],
[102] from hardware side-channel attacks. Some software [67],
[68], [87], [101] and hardware [16], [76] defenses against
transient execution attacks—which exploit hardware faults and
mis-predictions to steer secrets towards the unsafe operands
of transient (bound-to-squash) transmitters [23], [49]—extend
this strategy to target programs’ speculative executions as well.
We refer to software variants of such defenses as speculative
constant-time (SCT) programming defenses [87].

Five Bespoke Leakage Contracts: Today, the most per-
formant defenses against transient execution attacks are im-
plemented in hardware [20], [26], [53], [97]–[99]. Instead of
CT contracts [20], [98], [99] (or in addition to them [26], [53],
[97]), these defenses adopt bespoke leakage contracts that are
much finer grained. We consider five such fine-grained leakage
contracts in this paper. Table I in §IV shows how features
of these five contracts, described below for each of the six
hardware defenses they enable, and the CT contract map onto
the various components of our proposed leakage signatures.

MI6 [20] defends enclaves from hardware side-channel
attacks via two mechanisms. First, it requires identifying
dynamic (stateless—§II-A) channels that arise due to trans-
mitter operand-dependent hardware resource contention. Data-
independent scheduling logic is implemented for impacted
resources. Second, it requires identifying static (stateful) chan-
nels in order to implement a purge instruction, which flushes
relevant microarchitectural states, and partitioning schemes.

509



OISA [97] attaches secrecy labels to architectural state and
detects if a transmitter’s unsafe operand, as defined in a CT
contract, is ever passed secret data at runtime. It enables
transmitters that exhibit execution variability due to input-
dependent arithmetic units (like MUL in §I-A) to safely process
secrets as follows. First, the designer identifies arithmetic
units that may be occupied by a transmitter for an operand-
dependent number of cycles. Second, control logic is added to
enforce operand-independent execution for the unit whenever
a transmitter arrives with a secret-labeled unsafe operand.

STT [99] requires identifying all channels and classifying
them as explicit channels and implicit channels. Explicit
and implicit channels, respectively, arise when transmitters’
operand-dependent hardware resource usage affects their own
execution behavior and the execution behavior of other in-
structions. Transmitters that modulate explicit channels are
not permitted to execute with (potentially) secret operands. To
block implicit channels, designers must also identify explicit
branches or implicit branches. Explicit branches are archi-
tectural control-flow instructions, like conditional branches.
Implicit branches are instructions whose execution behavior
depends on the operands of other transmitters. Finally, implicit
channels are categorized as prediction-based or resolution-
based. To block prediction-based and resolution-based chan-
nels, respectively, the designer must identify predictor struc-
tures that are updated by explicit or implicit branches and the
points at which these branches resolve their predictions.

SDO [98] extends STT by optimizing its explicit channel
defense. First, the designer identifies transmitters that mod-
ulate explicit channels. To enable safe speculative execution
of these transmitters with (potentially) secret operands, the
designer creates a number of data-independent execution path
variants for each. These so-called data-oblivious variants are
derived from the set of realizable microarchitectural execution
paths for each transmitter on the baseline design. Then, the
designer adds control logic to select which path a transmitter
should take based on public predictor state.

Dolma [53] requires a CT contract to delay the execution
of transmitters until they become non-speculative. To improve
performance, Dolma has several additional requirements. First,
the designer must identify variable-time micro-ops and any
contention-based dynamic channels they create. Second, in-
ducive micro-ops that exhibit execution variation as a func-
tion of resolvent micro-ops’ (transmitters’) operands must be
flagged, along with the prediction resolution point during the
inducive micro-op’s execution at which this variation arises.
Lastly, persistent state modifying micro-ops (transmitters that
modulate static channels) must be identified and their persis-
tent state updates delayed until they become non-speculative.

SPT [26] and STT have the same fine-grained leakage
contract and differ only in their policy for when it safe to
declassify (mark public) data. STT declassifies data once it is
not a function of speculatively accessed data. SPT declassifies
data once it is inevitable that it will be, or has been, transmitted
architecturally; so, SPT additionally requires a CT contract.

III. RTL2MµPATH APPROACH: FORMALIZING
MICROARCHITECTURAL EXECUTION PATHS

Our first contribution is an automated approach and tool,
called RTL2MµPATH,1 for uncovering a complete set of for-
mally verified microarchitectural execution paths (µPATHs) for
each instruction implemented on a SystemVerilog processor
design. In this section, we explain the two key technical
advances that enable such an analysis: an extension to the µHB
graph formalism from prior work (§III-B) and a novel mapping
of µHB nodes onto RTL signals (§III-C). We establish the need
for both with a motivating example (§III-A). A discussion of
RTL2MµPATH’s implementation details is deferred until §V.

A. Motivating Example: Operand Packing

Consider an extension to the RISC-V CVA6 CPU [100]
that we verify in §VI, called CVA6-OP. The baseline CVA6
design may fetch up to two compressed instructions or one
uncompressed instruction per cycle, but only one instruction
can be sent to decode per cycle. CVA6-OP is identical to
CVA6, except that the ALU has been modified to support
operand packing [21], and up to two instructions can be sent
to decode per cycle. In particular, if a pair of (concurrently)
decoded instructions perform identical ALU operations and
feature narrow width operands (32 bits or less, i.e., the upper
halves of their 64-bit operands contain all zero bits), they will
be packed into a single operation and executed together.

Suppose we want to formally evaluate the vulnerability of
CVA6-OP to hardware side-channel attacks with the Check
tools (i.e., with CheckMate [80]). As discussed in §I, we
first need to acquire an abstract axiomatic model of the
microarchitecture, called a µSPEC model.

The enabler for Check-based hardware security verification
is the fact that µSPEC models define how instructions may
exhibit variable hardware resource usage when they run on a
specific hardware implementation (e.g., a load may experience
a cache hit or miss [80]). That is, they specify the various
microarchitectural execution paths (µPATHs—our term) that
may be exhibited by each instruction type (e.g., a LD, MUL, ADD,
etc.) on the design. A µSPEC model encodes distinct µPATHs
as distinct microarchitectural happens-before (µHB) graphs
(Fig. 2). A node in a µHB graph represents a microarchitectural
event, such as a dynamic program instruction (column label)
updating a particular set of hardware state elements (row label)
during its execution [46]. Directed edges denote happens-
before relationships [51].

A µSPEC model for CVA6-OP should capture the fact that
ADDs may exhibit two distinct µPATHs, depending on whether
they are packed or not. However, prior work [55]–[59], [80],
[82] would represent both of these scenarios with the same
µPATH—the one in Fig. 2a. This is because the packed versus
unpacked µPATHs differ according to how long an ADD spends
in the decode stage (one or two cycles), i.e., how many times
the ID node appears. The µHB formalism has not been used
to express repeated instances of the same µHB node.

1“RTL2MµPATH” indicates that it finds multiple (M) µPATHs per instruction.
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(a) (Non-)packed µPATH (b) Packed µPATH (c) Non-packed µPATH

Fig. 2: ADD µPATHs on CVA6-OP (§III), using standard µHB graphs
from prior work (a) and our new cycle-accurate µHB graphs (b, c).
Row(1/l): 1st/l-th visit to Row. Node label: value of l for µPATH.

Even if we resolve this minor modeling issue, the only
approach and tool for synthesizing formally verified µSPEC
models from processor RTL, called RTL2µSPEC, cannot un-
cover more than one µPATH per implemented instruction
(§I). Beyond missing repeated instances of the same node,
RTL2µSPEC’s mapping of µHB nodes to RTL signals precludes
identifying nodes that appear in some µPATHs but not others.
We address these limitations in §III-B and §III-C, respectively.

B. Extending µHB Graphs with Cycle-Accurate Timing

We extend the µHB graph formalism from prior work [46],
[55]–[59], [80], [82] with cycle-accurate timing information.
In particular, for all µPATHs in this paper (except in Fig. 2a),
a µHB node represents an instruction updating a particular set
of state elements in a specific cycle, while an edge represents a
one-cycle happens-before relationship. This extension enables
µHB graphs to express that an instruction may update the
same set of state elements in multiple (consecutive or non-
consecutive) cycles, which is needed to represent real designs,
e.g., ones where an execution unit has variable latency (like
CVA6-MUL in Fig. 1) or throughput (like CVA6-OP in Fig. 2).

Using our cycle-accurate µHB graph notation, the µPATHs
in Figs. 2b and 2c depict distinct (concrete) executions of an
ADD on CVA6-OP that distinguish when the ADD is packed or
not, respectively. We use row label Row(n) to denote the n-th
update to the set of state elements referred to by Row.

We use a special notation to summarize l consecutive
updates to the same set of state elements. Specifically, a pair
of row labels Row(1) and Row(l) denote the first and last (l-th)
consecutive updates to the state elements referred to by Row.
Node labels specify the value of l (which may be execution
dependent) for a particular concrete µPATH. For example, in
Fig. 2c, the node at ID(l) denotes an ADD’s second consecutive
update to the state elements referred to by ID. Dashed edges
that relate a Row(1) node to its corresponding Row(l) node
represent a totally ordered (by µHB edges) sequence of l − 2
nodes, ordered after Row(1) and before Row(l), with no other
outgoing edges. When l = 2 (as in Fig. 2c for ID(l)), the
dashed edge represents a normal (solid) µHB edge.

In every µPATH in this paper—each of which was syn-
thesized from CVA6 [100] using RTL2MµPATH (or, in the
case of Figs. 1 and 2, adapted from synthesized µPATHs)—IF

represents the first set of state elements that an instruction
updates upon being fetched, and scbCmt represents those
updated upon commit. Thus, one can deduce that a set of state
elements S (row label) is updated in cycle t of an instruction’s
execution, along some µPATH, if t is longest sequence of µHB
edges from the node at IF to the node at S, accounting for
implicit nodes and edges due to consecutive state updates. An
instruction’s overall latency is given by the longest sequence
of µHB edges from the node at IF to the node at scbCmt,
e.g., four (Fig. 2b) or five (Fig. 2c) cycles for a packed or
non-packed ADD on CVA6-OP, respectively.

In summary, our cycle-accurate µPATH abstraction provides
a precise accounting of an instruction’s hardware resource
usage (i.e., state updates) in time and space.

C. Recognizing µHB Nodes with Performing Locations

RTL2MµPATH uses static netlist analysis, linear temporal
logic (LTL) [62], [72] property generation (from property tem-
plates), and model checking [15], [28] to uncover all µPATHs
for each implemented instruction on a given SystemVerilog
processor design (§V). Importantly, it requires that a model
checker be able to recognize the various components of a
µPATH—µHB nodes and edges—when exploring instructions’
executions. As one-cycle happens-before relationships, edges
are readily expressible in LTL syntax. However, nodes must
be explicitly conceptualized in terms of RTL signals.

Recall that a µHB node represents an instruction updating a
particular set of design states in a given cycle (§III-B). Thus, a
model checker recognizing a µHB node equates to it detecting
what state elements are updated in some execution cycle and
attributing these updates to a particular in-flight instruction.
At first glance, this task appears highly challenging, given
that modern processors execute numerous instructions concur-
rently and out-of-order. However, we observe that the same
mechanisms that enable a processor to orchestrate instructions’
write access to design states can also be leveraged by a model
checker to recognize µHB nodes.

In particular, we find that a subset of finite state machines
(FSMs) within a processor’s control path, which we call
micro-op FSMs (µFSMs), govern instructions’ state updates
throughout their execution, from the time they are fetched
until possibly after they commit (e.g., when stores update
cache state). A µFSM is a tuple ⟨iir, vars⟩, where iir

is an instruction identifying register (IIR), which holds a
unique instruction identifier (IID) for an in-flight instruction,
and vars is a collection of state elements, which encode
the µFSM’s state variables. Example IIDs include program
counters (PCs) [46], [73], reorder buffer (ROB) or scoreboard
(SCB) identifiers, and memory transaction identifiers. An in-
flight instruction acquires a µFSM by placing one of its IIDs in
the µFSM’s iir, progresses through various µFSM states (i.e.,
concrete valuations of its vars), and then releases the µFSM
(i.e., by setting its vars to an idle state). The valuation of a
µFSM’s vars in a given cycle grants the instruction whose IID
is contained in its iir exclusive write access to a particular
subset of design states.
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// store_unit.sv
enum logic {...} state_d, state_q; // vars0
logic [TRANS_ID_BITS-1:0] trans_id_n, trans_id_q;// iir0

+ logic [riscv::VLEN-1:0] st_pc_n, st_pc_q; // pcr0
// load_store_unit.sv
assign lsu_req_i = {
lsu_valid_i, fu_data_i.trans_id, ... // (vars1, iir1)

+ , pc_i }; // pcr1

Fig. 3: Close proximity of µFSMs’ iir and vars components
(§III-C). PCRs are added (+) near IIRs that do not hold PCs (§V).

Leveraging µFSMs, we conceptualize µHB nodes in terms
of RTL signals as follows. First, we define the notion of a
performing location (PL)—similar to a pipeline stage, but
more granular—as a ⟨µfsm, state⟩ tuple, where µfsm is
a µFSM (i.e., an ⟨iir, vars⟩ tuple), and state denotes a
valid, non-idle valuation of µfsm’s vars. Hence, the set of
all PLs for a processor implementation denotes the set of
all valid, non-idle states across all of the design’s µFSMs.
Next, we say that “an instruction i visits (i.e., occupies) PL
⟨µfsm, state⟩ some cycle,” if at the start of that cycle, µfsm’s
iir contains an IID of i and µfsm’s vars is set to state.
Like a pipeline stage, a PL can be occupied by a single
instruction at a time, whose state updates (which take effect at
the start of the next cycle) it encapsulates. Unlike a pipeline
stage, an instruction may visit multiple PLs in the same cycle.
Finally, we direct a model checker to recognize a µHB node
during an instruction’s execution on a microarchitecture when
it detects the instruction visiting a particular PL in a given
cycle. Hence, in all µPATH figures in this paper, row labels
(ignoring parentheticals) denote PLs.

We require the designer to identify all signals that comprise
µFSMs (i.e., their IIR and state variable components) in the in-
put design (§V-A). RTL2MµPATH uses these signals to uncover
all PLs for the design and then all ways in which they can
be assembled into valid µPATHs for instructions. Specifying
µFSMs turns out to be straightforward, since they are already
in use to support functional verification efforts [42], [43].
Fig. 3 illustrates the close proximity of µFSMs’ IIR and state
variable signal definitions in CVA6 [100].

IV. SYNTHLC APPROACH: APPLYING MULTI-µPATH
SYNTHESIS TO HARDWARE SECURITY VERIFICATION

In designing RTL2MµPATH, we make an important ob-
servation: an instruction that exhibits µPATH variability (>1
µPATH) on some processor implementation strongly indicates
the presence of a microarchitectural side channel in the design.
Based on this observation, we develop SYNTHLC, the first
automated approach and tool for formally verifying hardware
adherence to microarchitectural leakage contracts (§II-B).

This section presents the SYNTHLC approach; a presen-
tation of its implementation as a tool is deferred until §V.
We first formalize instances of instruction µPATH variability
using the notion of a decision (§IV-B). Second, we show how
an instruction’s decisions can be attributed to the outputs of
path selector functions in the microarchitecture (§IV-C). If a
path selector function output depends on some instruction’s

(a) BEQ µPATHs (b) LD µPATHs (c) ST µPATHs

Fig. 4: A sampling of µPATHs for the CVA6 core (for BEQ, LD) and
data cache (for ST), synthesized by RTL2MµPATH (§VII). Row(1/l):
1st/l-th visit to Row. Node label: value of l for µPATH.

operands, it is a leakage function, and said instruction is a
transmitter. Instructions whose decisions can be attributed to
leakage functions are transponders. From leakage functions,
we derive leakage signatures—a unifying formalism that cap-
tures all relevant features of six leakage contracts from prior
work (summarized in §II-B and Table I), which are not already
captured by µPATHs (§IV-D). SYNTHLC conducts leakage
contract verification by synthesizing a comprehensive set of
leakage signatures from processor RTL (§V).

We present the concepts above using a more complex
illustrative example involving store-to-load stalling (§IV-A).

A. Illustrative Example: Store-to-Load Stalling

Consider two µPATHs for a load (LD) executing on the
RISC-V CVA6 CPU [100], shown in Fig. 4b. Following its
visit to the issue PL (orange node), a LD exhibits one of
two decisions. It stalls (right µPATH), progressing to LSQ and
ldStall (blue nodes), if the page offset of its address operand
matches that of any older pending store (ST) in the speculative
or committed store buffers (STBs)—its path selector function.
Else, it completes (left), progressing to ldFin (blue node).

Hardware side-channel defenses (§II-B) must ensure that
stores (transmitters) do not leak their (private) address
operands to a receiver who observes the µPATHs of executing
loads (transponders), e.g., by timing their execution latency—
five or nine cycles for the left or right µPATH, respectively, in
Fig. 4b. CT contracts would declare store address operands as
unsafe for processing secrets. STT, SDO, and SPT would flag
such a load as an implicit branch, while Dolma would cat-
egorize the load/store as inducive/resolvent micro-ops. OISA
would specify that store address operands are unsafe or require
hardware mechanisms avoid this channel for stores with secret
operands. MI6 declares this sort of leakage as out-of-scope.

B. Formalizing Instances of µPATH Variability with Decisions

We propose the notion of a decision to characterize specific
variations across the different µPATHs of a particular instruc-
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tion on a microarchitecture (e.g., a LD on CVA6).
Suppose µPATHI

M is the set of all possible µPATHs that a
dynamic instance of instruction I (e.g., I = LD) can exhibit
when it runs on microarchitecture M . Informally, “a decision
made by I on M” is a tuple (src,dst)—where src is a
single decision source PL (or decision source) and dst is a
set of decision destination PLs (or decision destinations)—that
pinpoints a divergence between a pair of I’s µPATHs on M .
Orange/blue nodes in µHB graph figures throughout the paper
denote some, but not all (for clarity of presentation), decision
sources/destinations. Suppose dI

M is the set of all decisions
that I can make on M . Then, (src,dst) ∈ dI

M if and only if:
For some p, p′ ∈ µPATHI

M , I visits src in p one cycle before
it visits exactly the PLs in dst, and I visits src in p′ one cycle
before it visits a different set of PLs than exactly those in dst.
By srcIM we denote the set of all decision sources across all
of I’s decisions on M .

For example, given the µPATHs in Figs. 2b and 2c, and
considering the orange and blue colored nodes exclusively (for
brevity), ADD has decision sources and decisions:

srcADDCVA6-OP =
{
ID

}
dADD
CVA6-OP =

{
(ID, {issue, scbIss}), (ID, {ID})

}
.

Similarly, given Fig. 4b and considering only colored nodes,
LD has decision sources and decisions:

srcLDCVA6 =
{
issue

}
dLD
CVA6 =

{
(issue, {ldFin}), (issue, {LSQ, ldStall})

}
.

Note that in practice, decisions are defined with respect to
PLs, irrespective of how many times they have been visited.
For example, in Fig. 1, scbIss is a decision source for MUL
on CVA6-MUL; it may be followed by decision destinations
{scbIss, mulU}, {scbIss}, or {scbCmt}.

C. Selecting a Decision with a Path Selector Function

Suppose iI is a dynamic instance of instruction I that
visits decision source src ∈ srcIM during its execution on
microarchitecture M . Which decision iI exhibits with respect
to src—i.e., which decision destination(s) iI visits one cycle
after visiting src—is determined by a path selector function
in hardware. In particular, during the cycle in which iI visits
src, a path selector function is queried to determine where iI
will progress to next. We use I_src to denote a path selector
function that is queried when an instruction of type I visits
decision source src; it returns a set of decision destinations.

Fig. 5 shows example path selector functions for CVA6-OP
and CVA6 [100]. Path selector functions may have explicit
inputs that are provided in the function argument list and
implicit inputs that are not. Explicit inputs are instructions
whose operands appear in the function body, capturing how
architectural state influences µPATH variability. Implicit inputs
are any other microarchitectural structures whose contents are
accessed in the function body, capturing how microarchitec-
tural state influences µPATH variability.

// CVA6-OP Core ADD (§III-A): ADD (i.e., ADDN) in ID is issued if it is
ready (the oldest in ID) or eligible for operand packing; else, it is stalled.
dst ADD_ID(ADDN i0, ADDD

O i1) :
return ite(((visit(i1, ID) ∧ (∀arg ∈ {i0.arg0, i0.arg1, i1.arg0, i1.arg1
},msb(arg) < 32)) ∨ rdy(i0)), {scbIss, issue}, {ID})

// CVA6 Core LD (§IV-A): LD in issue finishes or is stalled depending
on whether its address page offset overlaps with that of a pending ST.
dst LD_issue(LDN i0,STD

O i1) :
return ite((i1.addr ∈ (comSTB ∪ specSTB) ∧
offset(i0.addr) == offset(i1.addr)),{ldStall, LSQ}, {ldFin})

// CVA6 Cache ST (§VII-A2): A ST accesses one of two data banks on
a hit in the 4-way set-assoc. no-write-alloc. cache.
dst ST_wBVld(STN i0, LDS i1) :
hit = (cacheTag[set(i1.addr)][way] == tag(i1.addr) ∧ set(
i0.addr) == set(i1.addr) ∧ tag(i0.addr) == tag(i1.addr))

return ite(hit,{wRTag,wr$[way/2]}, {wRTag})
// CVA6 Core ST (new channel, §VII-A1): ST at comSTB is stalled from
draining to memory if its address offset does not match a younger LD.
dst ST_comSTB(SWN i0, LDD

Y i1) :
return ite((visit(i1, issue) ∧ offset(i0.addr) == offset(i1.addr)),
{memRq, comSTB}, {comSTB}})

Fig. 5: Leakage function examples. Implicit inputs and leakage
signature components are highlighted. T N/T D

O|Y/T
S: intrinsic / older

or younger dynamic / static transmitters. PO: program order. msb:
most significant bit. ite(c, t, f): t if c is true; else, f .

Moreover, each explicit input to a leakage signature has a
type that captures both its instruction type (opcode/function)
and particular runtime conditions (encoded with N, D, or S

superscripts and O or Y subscripts—detailed below) that must
be satisfied for the leakage signature to be applicable. In
particular, with respect to a dynamic instruction iI of type
(opcode/function) I that visits src ∈ srcIM on microarchitec-
ture M and queries path selector function I_src, each explicit
input iT (an instruction with opcode/function T ) is typed as:

• Intrinsic (T N iT ), if iI = iT , i.e., iT is the instruction
currently visiting src.

• Dynamic (T D
O|Y iT ), if iT is older (O) / younger (Y) than

iI (in program order), and iT must be in-flight (visiting
some PL) when iI visits src for it to influence I_src’s
output. Notably, when iT is younger than iI , M can be
susceptible to speculative interference attacks [17].

• Static (T S iT ), otherwise.
Illustrative Example: LD_issue Path Selector Function:

For our store-to-load stalling example (§IV-A), the path selec-
tor function LD_issue in Fig. 5 is queried to select a decision
for a dynamic LD instruction iLD during any cycle in which
it visits the issue PL. Its explicit inputs LDN i0 and STDO i1
indicate that iLD’s decision at decision source issue is a func-
tion of its own operands and those of another older in-flight
ST, respectively. Its outputs are one of two sets of destination
PLs: {ldStall, LSQ} (stall µPATH) or {ldFin}. The function
body shows that the output of LD_issue specifically depends
on the address operands of iLD = i0 and i1.

A receiver that can determine which µPATH iLD exhibits
relative to issue, learns LD_issues’s return value. Since the
return value depends on the address operands of explicit inputs
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Defense Leakage Contract Components µ
Leakage Sig.

P src T N T D T S a

CT, SCT (§II-B)
SpecShield [16]
ConTExt [76]

Constant-time contract (§II-B) - - - ✓ ✓ ✓ ✓

MI6 [20] Contention-based dynamic channels - ✓ ✓ ✓ ✓ - -
Static channels - ✓ ✓ - - ✓ -

OISA [97] Input-dependent arithmetic units - - ✓ ✓ - - ✓

STT [99]
SDO [98]
SPT [26]

Explicit channels - ✓ ✓ ✓ - - ✓
Implicit channels - ✓ ✓ - ✓ ✓ ✓
Implicit branches - ✓ - - ✓ ✓ ✓
Prediction-based channels - ✓ ✓ - - ✓ ✓
Resolution-based channels - ✓ ✓ - ✓ - ✓

SDO [98] Data-oblivious variants ✓ - - ✓ - - ✓

Dolma [53]

Variable-time micro-ops - - - ✓ - - ✓
Contention-based dynamic channels - ✓ ✓ ✓ ✓ - ✓
Inducive micro-ops ✓ - - ✓ - ✓
Resolvent micro-ops - - - - ✓ - ✓
Prediction resolution points - ✓ ✓ - ✓ - ✓
Persistent state modifying micro-ops - - - - - ✓ ✓

TABLE I: Six leakage contracts (§II-B) mapped onto µPATHs (µ)
and leakage signatures. a: Arguments. ✓/-: Relevant/irrelevant to the
leakage contract component.

iLD = i0 and i1, such a receiver may infer their values.
Leakage Functions and Transponders: At least one

operand of an explicit input to a path selector function may
leak its value to a receiver that observes the function output.
So, we call a path selector function with at least one explicit
input a leakage function; explicit inputs are transmitters. A re-
ceiver observes a path selector function output as a µPATH de-
cision of the instruction that queried it. We call an instruction
whose perceived µPATH variability leaks transmitter operands
a transponder, extending the telecommunications analogy for
characterizing hardware side-channel attacks (§II-A).

To summarize, a leakage function dst P_src(iT , iT ′ , ...)
characterizes a microarchitectural side channel, mapping the
operand space(s) of transmitters T, T ′, ... that modulate it onto
the observation space of a receiver that observes it. Assuming
a receiver that observes µPATHs of executing instructions, the
observation space consists of the set of distinct decisions that
transponder P may exhibit relative to decision source src.

Formally Characterizing Channels: Notably, leakage
functions enable formally defining static versus dynamic chan-
nels and passive versus active attacks (§II-A).

We call a channel (leakage function) static iff it is modulated
by a static transmitter. We call a channel dynamic iff it is
modulated by an intrinsic or dynamic transmitter. A channel
may be static and dynamic, e.g., consider a leakage function
whose output decides whether or not a transponder LD stalls on
a cache access. The decision may depend on another dynamic
LDD that contends for the same read port or another static LDS

that evicted LD’s cache line, causing a cache miss. SYNTHLC
discovers this scenario when analyzing the CVA6 cache (§VI).

By definition, a transmitter is an instruction in a victim
program (§II-A). In a passive attack, the transponder is a
victim instruction, which the attacker passively monitors. In

an active attack, the transponder is a receiver instruction.

D. Unifying Leakage Contracts with Leakage Signatures

We propose a unifying formalism, called a leakage sig-
nature, to capture all relevant features of six state-of-the-art
leakage contracts, summarized in §II-B, which are not already
captured by µPATHs. A leakage signature is a leakage function
that is restricted to the yellow-highlighted components of
Fig. 5: transponder and decision source (function name), typed
transmitters (explicit inputs), unsafe transmitter arguments (in
the function body), and decision destinations (return values).

Table I shows how various components of the six leakage
contracts in §II-B can be derived from µPATHs (µ) and leakage
signatures. These contracts do not consider notions of decision
destinations nor do they explicitly distinguish older versus
younger dynamic transmitters, so the table omits these details.

Consider the five leakage contract components shared by
STT [99], SDO [98], and SPT [26]. Each can be derived from
the checked (✓) leakage signature components in Table I as
follows. Explicit channels denote sources of µPATH variability
(src) for intrinsic transmitters (T N), which are transponders
(P) by definition, as a function of their arguments (a). Im-
plicit channels are sources of µPATH variability (src) for
transponders (P) as a function of dynamic (T D) or static (T S)
transmitters’ arguments (a). Implicit branches are transponders
(P) that exhibit µPATH variability due to dynamic (T D) or static
(T S) transmitters’ arguments (a). Prediction-based channels
and resolution-based channels manifest as sources of µPATH
variability (src) for transponders (P) due to dynamic (T D) and
static (T S) transmitters’ arguments (a), respectively.

V. SYNTHLC TOOL: USING RTL2MµPATH TO SYNTHESIZE
LEAKAGE SIGNATURES FROM PROCESSOR RTL

We present SYNTHLC, an automated approach and tool
for synthesizing a comprehensive set of formally verified
leakage signatures from a SystemVerilog processor design,
from which one can derive the leakage contracts in Table I.
First, SYNTHLC uses RTL2MµPATH to uncover all µPATHs for
each instruction implemented on the design (§V-B). Instruc-
tions with more than one µPATH are candidate transponders.
Second, SYNTHLC uses a symbolic information flow analysis
to classify each candidate transponder’s decisions as dependent
on the unsafe operand(s) of (typed) transmitter(s) or not
(§V-C). The result is a set of true transponders with leakage
signatures that characterize all of their transmitter operand-
dependent µPATH variability.

A. Inputs & Metadata Requirement

Both SYNTHLC and RTL2MµPATH require three inputs:
the SystemVerilog design under verification (DUV), a list
of encodings for each implemented instruction, and design
metadata. We detail our metadata requirement below, which
follows from the fact that these tools make extensive use of
model checkers to evaluate auto-generated LTL properties,
formulated as SystemVerilog Assertions (SVAs) [2]. Table II
quantifies this metadata for the CVA6 Core and Cache (§VI).
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Fig. 6: RTL2MµPATH (top) and SYNTHLC (bottom) synthesize a complete set of formally-verified leakage signatures.

First, the designer must identify the instruction fetch register
(IFR) [46], which holds fetched instruction encodings before
they are supplied by the processor frontend to the backend.
RTL2MµPATH uses the IFR to constrain the execution traces
considered by a model checker, e.g., to those that feature some
specific instruction under verification (IUV) [32], [46], [73].

RTL2MµPATH uses a single IID to track an IUV as it
progresses through various PLs during its execution on the
DUV (§III-C)—its PC. Hence, RTL2MµPATH requires each
µFSM’s IIR to be a program counter register (PCR) [32],
[46], [73], which contains the PC of the instruction occupying
it. PCRs may be present in the original DUV or added in
parallel to the IIRs in the DUV solely for verification [32],
[46], [73].2 Fig. 3 shows an excerpt of two CVA6 design files
where we add PCRs in parallel to existing IIRs.

Once the DUV is augmented (if necessary) with PCRs,
RTL2MµPATH requires the user to supply all µFSMs as tu-
ples of signal names ⟨pcr, vars⟩ that denote their PCR and
state variable components (§III-C). Plus, since RTL2MµPATH
considers invalid any PL ⟨µfsm, state⟩ where state = idle ,
the user is also required to supply each µfsm’s idle state(s).
For CVA6, there are 21 PCRs, and thus µFSMs, in total; we
add 14 PCRs to the baseline design.

To detect when instructions commit, RTL2MµPATH requires
the user to supply the DUV’s commit signal.

Two final inputs support SYNTHLC’s symbolic information
flow analysis. First, the user must identify the architectural
register file (ARF) and architectural main memory (AMEM)
to block taint propagation between instruction outputs/inputs.
Second, they must identify operand registers, located at the
issue or register read stage, to enable taint introduction for
transmitter operands.

B. RTL2MµPATH Tool: Synthesizing µPATHs from RTL

For each IUV, taken from the input list of instruction en-
codings, RTL2MµPATH finds all of its µPATHs by using model
checkers to explore its execution behavior in all reachable
contexts, starting from a valid reset state, i.e., a hard processor
reset, where only architectural state is symbolically initialized.
All reachable contexts indicates that the IUV may be preced-
ed/followed by an arbitrary number of valid instructions.

We explain RTL2MµPATH’s synthesis procedure below, as
depicted in Fig. 6. Each step involves instantiating numerous

2Such auxiliary state elements exist exclusively within the verification
environment, and are removed prior to synthesis and fabrication.

Identified in CVA6 Core
IFR IIRs (PCRs) µFSMs PCRs commit operand ARF AMEM
1 reg 21 (7) regs 38 regs 21 regs* 1 wire 2 regs 1 array 1 array

Added to Core
PCRs SV

14 regs 39 LoC

Added to Cache
PCRs SV
9 regs 74 LoC

Identified in CVA6 Cache
IIRs (PCRs) PCRs µFSMs

9 (0) regs 9 regs* 13 regs

TABLE II: User annotations required by SYNTHLC (§V-A) and
all/some [31], [32], [36] of prior works (§VIII). *: With added ones.
µFSMs signals correspond to their state variables (§III-C).

SVA properties from templates. Important SVA syntax for
understanding our templates includes the notions of cover
and assume statements. A cover property directs a model
checker to search for any execution trace that satisfies a given
condition. A reachable outcome is returned when a trace is
found. An unreachable outcome is a proof that no such trace
exists. An undetermined outcome indicates that a satisfying
trace cannot be found due to a timeout or resource constraints,
but it may exist. We discuss implications of undetermined
model checker outcomes in §VII-B4. SVA assume statements
constrain the execution traces considered by a model checker
to those that satisfy their specified condition when evaluating
SVA properties (e.g., cover properties).

1) PL Reachability for DUV: For each µfsm = ⟨pcr, vars⟩
(§III-C), RTL2MµPATH enumerates its feasible PLs by con-
sidering all constant valuations of vars and excluding user-
identified idle states. Then RTL2MµPATH instantiates SVA
properties to prune those PLs that are proven unreachable on
the DUV by any instruction. The remaining DUV PLs are
those PLs reachable by some IUV (i.e., some IUV can visit
them). Our CVA6 case study has a total of 41 DUV PLs.

Next, RTL2MµPATH conducts several IUV-specific analyses.
2) PL Reachability for IUV: Like the first step, but con-

ditioned on a specific IUV, RTL2MµPATH instantiates SVA
properties to discard from consideration PLs that are proven
unreachable by the IUV, producing a set of IUV PLs. For
example, in Fig. 6, the LSQ PL is part of the set of DUV PLs,
but not included in the set of IUV PLs for an ADD.

3) Fine-Grained Pruning: For an IUV, our first goal is to
derive its Reachable PL Sets. A Reachable PL Set is a set of
PLs that is exclusively visited in one of the IUV’s executions,
i.e., there exists an execution of the IUV that visits all of the
PLs in the set and no others.

Deriving all Reachable PL Sets for an IUV, naïvely, requires
asking a model checker to consider each element in the power
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set of the IUV PLs and deduce its reachability. RTL2MµPATH
prunes this power set in two ways using SVAs: it removes
elements from the power set that contradict dominates and
exclusive relationships between PLs. We say pl0 dominates
pl1 iff all executions of the IUV that visit pl0 also visit pl1.
We say pl0 and pl1 are (mutually) exclusive iff there exists no
execution of the IUV that visits both pl0 and pl1.

RTL2MµPATH deduces dominates (exclusive) relationships
by instantiating and evaluating the top (bottom) SVA property
template below for each ordered (unordered) pair of IUV PLs.
In all such listings in the paper, blue (brown) terms are
template arguments (SystemVerilog or SVA keywords).
pl_0_dom_pl_1: cover (!pl_0_visited & pl_1_visited);
pl_0_excl_pl_1: cover (pl_0_visited & pl_1_visited);

An unreachable outcome for the top (bottom) property
proves there exists no execution trace where the IUV visited
pl1 but not pl0 (visited both), thus helping to prune PL Sets.

4) PL Set Reachability: For each Candidate PL Set that
remains after pruning, RTL2MµPATH instantiates this property:
// {pl_0, pl_1, ..., pl_n}: IUV PLs
// cand_pl_set consists of pl_0, pl_1, ..., pl_j
assume (!pl_{j+1} & !pl_{j+2} ... & !pl_n);
cand_pl_set: cover (pl_0_visited & pl_1_visited & ... &

pl_j_visited & !(pl_0 | pl_1 | ... | pl_j));

A reachable outcome indicates an execution trace exists
where, by the time the IUV has disappeared from the processor
(!(pl_0 | ... )), it has visited exclusively PLs in the
Candidate PL Set (cand_pl_set).

Next, RTL2MµPATH iterates over the elements of each
Reachable PL Set (discovered above) and uses SVAs to
determine which constituent PLs may non-consecutively or
consecutively be revisited (§III-B). Non-consecutively revis-
ited PLs are simply marked as such. Consecutively revisited
PLs are duplicated and tagged as representing the first/last
consecutive visit, e.g., ID(1)/ID(l) in Fig. 4. Knowing which
PLs may be non-consecutively or consecutively revisited is
sufficient to place HB edges and uncover all decisions across
an IUV’s µPATHs—what SYNTHLC ultimately derives from
RTL2MµPATH’s output (§IV-B). So, RTL2MµPATH can be
configured to avoid deducing the exact number of revisits per
PL (e.g., all possible values of l for ID(l)) as an optimization.
The majority of our experiments in do this (§VI).

5) Happens-Before Edges: RTL2MµPATH extends each
Reachable PL Set to a full µPATH by deriving a partial order
on visited PLs. RTL2MµPATH considers as candidate HB edges
all ordered pairs of PLs that are connected via pure combi-
national logic in the DUV to capture causal happens-before
relationships among visited PLs exclusively. Each candidate
edge is evaluated for every Reachable PL Set using SVAs to
determine if it constitutes a true HB relationship.

6) All Cycle-Accurate µPATHs: While not needed by
SYNTHLC, RTL2MµPATH can be configured to uncover: (i)
for each IUV, for each PL that it may revisit, the set of
revisit cycle counts for the PL that the IUV can exhibit across
all of its executions, or (ii) all µPATHs that concretize the
precise number of visits to each revisited PL (as in Fig. 1,
4, 2b, and 2c). We direct RTL2MµPATH to perform (i) for

Fig. 7: Constraints on SVA properties to classify transmitters as (1)
intrinsic, (2a/b) older/younger dynamic, or (3) static.

CVA6 to support SDO (Table I). RTL2MµPATH is currently
not optimized for (ii), which generates many (still easy-to-
check) properties, proportional to the cross product of distinct
concrete values per PL derived in (i). We expect we can
drastically prune these properties (as in §V-B3), but it is
unnecessary for our focus: leakage contract verification.

C. Attributing µPATH Variability to Transmitters

After RTL2MµPATH uncovers all µPATHs for each imple-
mented instruction on the DUV, SYNTHLC identifies candi-
date transponders and collects all decisions for each (§IV-B).

1) Symbolic IFT: For each candidate transponder P ,
SYNTHLC considers each of its decisions (src,dst) ∈ dP

M

(M is the DUV) in turn to determine if P exhibits (src,dst)
as a function of some transmitter T ’s unsafe operand op. All
possible (T, op) pairs are considered for each decision.

To do this, SYNTHLC first augments the DUV with cell-
level information-flow tracking (IFT) circuitry, which supports
per-data-bit introduction and propagation of taint to track
the explicit and implicit flows of certain data dynamically
at runtime [78]. Next, it uses a model checker to consider
a dynamic instance of P , iP , and a dynamic instance of T ,
iT , executing together in all reachable contexts following a
valid reset state (§V-B), subject to three assumptions (Fig. 7).
In all cases, each data bit is assigned one taint bit, taint is
introduced for op of iT exclusively, and taint is prohibited from
propagating architecturally between instruction outputs/inputs.

Assumption 1 determines if T is an intrinsic transmitter
with respect to (src,dst) by constraining iT and iP to be the
same dynamic instruction. Assumption 2, which is composed
of sub-assumptions 2a and 2b, determines if T is a dynamic
transmitter by constraining iT to be in-flight when iP visits its
decision source src. Sub-assumption 2a/2b considers the case
where iT is fetched before/after iP (i.e., iT is older/younger
than iP ). Assumption 3 determines if T is a static transmitter
by constraining iT to have materialized and dematerialized in
M before iP reaches src.

Note that the third assumption uses one additional taint bit
per data bit to support flushing “sticky” taint that is associated
with op’s dynamic influence on transponders’ µPATHs, thereby
considering its static influence exclusively.

The SVA template below has two assumes. The first one
introduces taint (exclusively) at the register corresponding
to op (§V-A), when iT is at the issue stage. The second
restricts execution traces to those satisfying one of three
aforementioned assumptions. The cover property searches for
an execution trace where iP visits src (src_pl) once cycle
before (##1) it visits all of the PLs in dst ((dst_pl_0
& ...)) and the µFSMs of these decision destinations are
tainted—signaling a dependence on iT ’s operand op.
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// Candidate transponder decision (src_pl, {dst_pl_0, ...})
assume ((iT_at_issue) ^ (op_reg_taint == 1));
assume (assumption 1/2/3);
decision_taint: cover (src_pl ##1 ((dst_pl_0 & ...) &
(dst_pl_0_taint | ... )));

A reachable outcome results in assigning a tag to P ’s
decision (src,dst), denoting that it is dependent on typed
(intrinsic / older or younger dynamic / static) transmitter T ’s
unsafe operand op. An unreachable outcome assign no tag.

After using the property above to evaluate every one of
P ’s decisions (under all three assumptions, for every possible
(I, op) pair), we can construct a leakage signature for each of
P ’s decision sources as follows (§IV-D). If P exhibits at least
two transmitter operand-dependent decisions with respect to
src ∈ srcPM , we construct a leakage signature corresponding
to leakage function P_src (function name).3 Examining tags
assigned to all such decisions (those involving src) gives
us typed transmitters (explicit inputs) and unsafe transmitter
arguments (in the function body). Decision destinations (return
values) are all sets of PLs dst such that (src,dst) ∈ dP

M .
Notably, SYNTHLC’s symbolic IFT step also uncovers im-

plicit inputs (Fig. 5) to leakage functions, which may be useful
towards implementing the hardware side-channel defenses in
§II-B using the leakage contracts in Table I.

2) Security Argument: A proof in our repository [1] shows
that SYNTHLC produces a set of leakage signatures that cap-
ture all violations of hardware side-channel safety, as defined
below, subject to a receiver RµPATH. RµPATH observes the PLs
occupied by in-flight instructions in each cycle, modeling a
receiver that perceives channel modulations via their impact
on instruction/program execution time or resource contention.

Definition V.1 (Hardware Side-Channel Safe). A microar-
chitecture M is hardware side-channel safe with respect to
receiver R, or SC-Safe(M,R), iff:

∀p.∀π.∀σ, σ′.∀µ.ArchCtrl(p) =⇒

(σ ≈π σ′ =⇒ OR({|p|}⟨σ,µ⟩M ) = OR({|p|}⟨σ
′,µ⟩

M ))
(V.1)

Eq. V.1 quantifies over all programs p and security policies
π (which label program inputs as public or secret), all pairs of
initial architectural states σ, σ′ and all initial microarchitectural
states µ. Looking at the second line, the antecedent, σ ≈π σ′,
checks that the initial architectural states are low-equivalent
with respect to π: they agree on the values of low data in π,
i.e., p’s public data inputs. The consequent, OR({|p|}⟨σ,µ⟩M ) =

OR({|p|}⟨σ
′,µ⟩

M ), asserts that R obtains identical observation
traces when p runs on microarchitecture M from initial states
⟨σ, µ⟩ and ⟨σ′, µ⟩. Given our focus on microarchitectural (not
architectural) side channels, the first line requires p to feature
the same sequence of instructions along all branches of secret-
dependent control-flow instructions (ArchCtrl(p)).

Eq. V.1 violations indicate that the observation trace ob-
tained by receiver R from running program p with privacy
policy π on microarchitecture M is indisputably a function

3A single decision may be tagged transmitter operand-dependent due to
imprecision of symbolic IFT (§V-C). At least two decisions must be operand-
dependent to yield >1 receiver observations as a function of operand values.

of p’s high inputs. Note that secret-dependent control-flow
instructions can still behave as microarchitectural transmitters
and cause Eq. V.1 violations, e.g., if they create operand-
dependent squashes. Moreover, virtually all microarchitecture,
for any realistic receiver, will trigger Eq. V.1 violations—the
goal of a leakage contract is to account for them all.

VI. SYNTHESIZING LEAKAGE SIGNATURES FROM CVA6

We use SYNTHLC to synthesize leakage signatures from the
RISC-V CVA6 CPU (commit #00236BE), considering all 72
instructions in the RV64I ISA and M extension (RV64IM).

CVA6 [100] is a 64-bit, 6-stage, single-issue RISC-V core
featuring speculation and limited out-of-order write-back with
diverse functional units (ALU, LSU, Mul/Div, CSR buffer).
It has a FIFO scoreboard (SCB) that tracks instructions from
issue to commit and retires instructions in-order. Functional
units may complete out-of-order in the SCB provided older,
non-retired instructions’ destination registers do not match.

We configure the design as follows. Both speculative and
committed store buffers (STBs) are sized to two entries. The
SCB is sized to four entries, but due to a bug in CVA6 that we
discovered during our case study, only three entries are ever
occupied at a time by active instructions (§VII). Such down-
scaling is typical in formal verification [33], [34]. We configure
CVA6 without a memory management unit, and our main
experiment instantiates the CVA6 Core as the DUV. Another
experiment instantiates the CVA6 Cache (L1 data cache and
cache controller) as the DUV. CVA6 does not come with a
Verilog behavioral model of memory, so we add a single-port
RAM behavioral model consisting of 32 64-bit words for the
CVA6 Core DUV; the load-store unit (LSU) and committed
STB are modified to directly interface with memory.

The elaboration step black-boxes the design’s frontend,
since RTL2MµPATH drives all issued instructions at the IFR
with a model checker. The multiplier is also black-boxed to
reduce verification complexity. Since RTL2MµPATH explores
control state behavior, purely combinational logic circuits
can be safely abstracted—a key benefit. The core design
features 8,577 lines of SystemVerilog; after elaboration there
are 22,138 wires, 19,575 standard cells, 482 registers (11,985
D flip-flop bits), and 3 memory arrays (including ARF and
AMEM in Table II). The data-cache is 4-way, 128B (scaled
down from 32 KB), featuring 2,279 lines of SystemVerilog.

We supply required metadata from §V-A to RTL2MµPATH
and SYNTHLC (Table II). Our implementations of both tools
use SVA 2009 [2] and the JasperGold v21.03 property ver-
ifier [22]. We use Verific [13] and Yosys [92] to parse
SystemVerilog and instrument the DUV with IFT logic using
CellIFT [78]. All experiments are run on three compute nodes,
each of which features two 32-core 2.9GHz Intel Xeon CPUs
with 512GB RAM.

VII. RESULTS & DISCUSSION

SYNTHLC synthesizes a complete set of leakage signatures
for the CVA6 Core (considering all instructions), and a partial
set for the CVA6 Cache (considering loads and stores).
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Fig. 8: SYNTHLC CVA6 Core results. Transponders (coarse-grained columns) and their leakage signatures with output range sizes (fine-
grained columns), plus explicit inputs from intrinsic/dynamic transmitters in N/D-labeled rows, where the top/bottom sub-row is rs1/rs2. We
distinguish secondary leakage (§VII-A1) and false-positive leakage (§VII-B1) from primary leakage (§VII). Primary leakage is categorized
as involving explicit channels implicit channels , or explicit branches using STT [99] terminology.

A. Summary of Results

We first discuss the transmitters and transponders surfaced
by SYNTHLC in our experiments.

1) Transponders and Transmitters: CVA6 Core: Fig. 8
summarizes SYNTHLC’s synthesis results for the CVA6
Core. Coarse-grained row/column types denote transmitter-
s/transponders. Fine-grained row and column labels, respec-
tively, denote transmitter types (intrinsic/dynamic) and ranges
for distinct leakage signatures. The top/bottom sub-row for
each fine-grained row indicates transmitter operand rs1/rs2.

SYNTHLC finds transponders and leakage signatures per
§V. We observe that (i) classes of transponders feature iden-
tical leakage signatures, and (ii) classes of transmitters are
explicit inputs to the same leakage signatures where they
feature identical types. So, Fig. 8 groups transponders and
transmitters accordingly. Each fine-grained column represents
a leakage signature P_src, where P can be any transponder
in the class represented by the coarse-grained column label.
Colored cells within a column indicate P_src’s explicit inputs
having intrinsic/dynamic transmitters on N/D crossing rows.

As an example, consider the leftmost fine-grained column,
outlined in red. It corresponds to a leakage signature ADD_ID
that SYNTHLC synthesizes for ADD transponders on the CVA6
CPU. ADD_ID may output one of three decisions for ADDs with
respect to decision source ID. The top-/bottom-most colored
cell in the column indicates that operand rs1 of a dynamic
branch/store is an explicit input to ADD_ID. Overall, this col-
umn indicates that an ADD exhibits three-way µPATH variability
at ID as a function of dynamic branch/division/remainder
operands (both rs1 and rs2), load/store operands (rs1, the
base address), and JALR operands (rs1, the target address).

Colored Fig. 8 cells represent primary (orange, red, blue)
versus secondary (gray) leakage. Primary/secondary leakage
indicates that the transponder (column) can/cannot leak the
transmitter’s (row) unsafe operand without the presence of
other transponders. Secondary leakage often arises due to
shared resources, e.g., an ADD that is stalled from committing
at the SCB, stuck behind an intrinsic transmitter (e.g., DIV).

SYNTHLC flags all 72 evaluated instructions as transpon-
ders and finds that the CVA6 core features intrinsic and
dynamic transmitters exclusively (hence the omission of static
transmitter labels in Fig. 8). Nineteen intrinsic transmitters

are found: eight division (DIV) and remainder (REM) variants,
seven load (LD) variants, and four store (ST) variants. Twenty-
six dynamic transmitters are found: all intrinsic transmitters
plus six branch variants and JALR. Notably, all intrinsic trans-
mitters except stores can exhibit execution time variability as
a function of their operands. The paragraphs below summarize
key findings, organized around classes of transponders.

Load: On CVA6, a LD transponder may exhibit sev-
eral decisions at issue, including proceeding to destinations
{ldFin}/{LSQ, ldStall} as described in §IV-A as a function
of rs1 of the LD itself (LDN) and rs1 of a dynamic store (STDO).

Store: A ST transponder exhibits µPATH variability fol-
lowing a PL in the committed STB (comSTB), where it stalls
if a younger in-flight load with a different address is ready to
access the single-R/W-port memory; CVA6 prioritizes serving
the younger load. The leakage signature (ST_comSTB in Fig. 5)
output depends on rs1 of the ST itself (STN) and rs1 of a
dynamic load (LDDY). We are the first to uncover this channel
when conducting CV6 leakage contract verification [31], [32].

Interestingly, this channel renders CVA6 susceptible to a
new class of speculative interference attacks [17], involving
transient dynamic transmitters (LDs, in the shadow of older
excepting instructions) that create µPATH variability for older,
committed transponders (STs). Since this µPATH variability
takes place after STs commit, it does not impact their execution
time. Classic variants [17] involve transient intrinsic transmit-
ters whose own µPATH variability creates timing-differentiable
µPATH variability for older, bound-to-commit transponders.
Using transponders, we can more generally define speculative
interference attacks as involving transient transmitters that
create µPATH variability for older non-transient transponders.

Division/Remainder: SYNTHLC flags all DIV/REM vari-
ants as intrinsic transmitters, and thus, transponders. Both
use serial division circuitry, taking one to sixty-six cycles to
compute their results (based on revisit cycle counts, §V-B6).

All: All transponders (all instructions) can be stalled
in ID (from issuing) or scbFin (from committing) as a
function of the operand(s) of dynamic LD, ST, DIV, and/or
REM transmitters. The stall in ID/scbFin can be 1 to 68/4
consecutive cycles. They may also be flushed at almost any PL
as a function of dynamic branch or JALR transmitter operands:
all six branches and JALR are flagged as dynamic transmitters.
The one exception is LD transponders; once LDs visit certain
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PLs in the load unit (ldStall, ldFin), they cannot be flushed
until they exit the load unit. Branches, as a function their
rs1 and rs2 operands, and JALR, as function of its rs1

operand, flush a transponder upon a mis-prediction. Prior work
classifies branch and JALR operands as unsafe on CVA6, but
cannot deduce why [32]. Note that no control-flow instruction
is flagged as a static transmitter, because we black-box the
CVA6 Core front-end (§VI), where predictor structures reside.

2) Transponders and Transmitters: CVA6 Cache:
SYNTHLC is not a modular verification procedure. However,
we use the SYNTHLC approach to conduct a conservative
and partial security evaluation of the CVA6 Cache in order to
show that it can: (i) analyze a realistic cache, which no prior
leakage contract verification work has attempted [31], [32],
[85], [86], [91]; (ii) handle non-consecutive re-visit behavior
(§III-B), which exists in the Cache DUV only; (iii) benefit
from modularity from a scalability perspective (§VII-B3).

First, SYNTHLC collects all LD/ST decisions based on the
RTL2MµPATH’s analysis results on the Cache DUV. Second,
we select three source PLs apiece for LD/ST—the three with
the highest number of destination PL sets (four on average).
Third, we instantiate a Core+Cache DUV and check that these
reachable Cache decisions are reachable on the full design; all
pass this check in our experiment. Finally, SYNTHLC conducts
its symbolic IFT step on the Cache DUV to produce leakage
signatures for all six decision source PLs.

Interestingly, all leakage signatures for LD (ST) transpon-
ders have identical explicit inputs, which flag every relevant
transmitter type—intrinsic/dynamic/static LDs (STs) and dy-
namic/static STs (LDs)—as leaking its address operand. Plus,
SYNTHLC uncovers channels involving hardware structures in
nearly all Cache files, specifically: tag banks, fully-associative
write buffer, MSHRs, shared ports to the AXI interface.

Fig. 4c shows some µPATHs for stores. A ST visiting wBVd,
where it accesses the cache, may exhibit several decisions,
including progressing to destinations {wRTg, wr$0}/{wRTg} in
the left/right µPATH upon a cache miss/hit. The synthesized
leakage signature ST_wBVd, shown in Fig. 5, flags LDs as static
transmitters (LDS), but not STs (since the cache is no-allocate
on write), and the ST itself as an intrinsic transmitter (STN).

Results from our Cache evaluation are conservative (sound
but incomplete, §VII-B4), since symbolic IFT can possibly
flag transmitter-transponder interactions that are possible on
the Cache DUV, but not the Cache+Core. We manually inspect
results and confirm that all flagged leakage looks plausible.

B. Discussion

1) False-Positives from IFT: SYNTHLC exhibits some false
positives (Fig. 8) due to IFT imprecision. Interestingly, it does
not identify any false-positive transmitters. It does, however,
identify a handful of false-positive transmitter-transponder
associations, i.e., indicating that some transponder’s decision is
operand-dependent on some (intrinsic/dynamic) transmitter’s
operand when it is not. In particular, 14/94 (1/6) unique
leakage signatures obtained from the CVA Core (Cache) in-
clude extraneous explicit inputs. So, a few extraneous (benign)

dynamic/intrinsic transmitters are flagged. We find these cases
arise when distinct µFSMs in the same structure (e.g., in
different SCB entries) share fan-in signals, which are updated
as a function of transmitter operands, causing over-taint.

2) CVA6 Bugs: RTL2MµPATH/SYNTHLC helped us iden-
tify three new functional bugs in CVA6 (two have security
implications), involving JAL/JALR/branches [45].

RTL2MµPATH finds that following its visit to the scbFin

(SCB finished PL), JALR never progresses to scbExcp (SCB
exception PL), while JAL and branches sometimes do. The
RISC-V ISA requires that JAL/JALR/branches all trigger ex-
ceptions if their target addresses are not 4-byte aligned. From
inspection, we find CVA6 does not enforce any alignment
restrictions for JALR (as its µPATHs indicate). While inves-
tigating JALR, we also notice that JAL only enforces 2-byte
alignment checks. Notably, these functional bugs can expand
the attack surface for control-flow hijacking attacks [24].

SYNTHLC reports that whether a conditional branch pro-
gresses to scbCmt (SCB commit PL) or scbExcp following
scbFin is independent of its operands. But, RISC-V requires
that branches raise misaligned target exceptions only when
their (operand-dependent) outcome is taken. From inspection,
we find that branches incorrectly raise exceptions whenever
their target address is misaligned, regardless of their outcome.

From the RTL waveforms produced by RTL2MµPATH’s
reachable SVA cover properties (§V-B), we observe that the
SCB is always underutilized by one entry. We localized
this counterintuitive behavior to an incorrect counter width
declaration in the CVA6 Core. By the time we noticed this mi-
croarchitectural bug, it had been fixed (commit #5c0dc19).

3) Property Evaluation Performance: For µPATHs synthesis
for the CVA6 Core, RTL2MµPATH evaluates 124,459 prop-
erties in 4.43 minutes per property on average under a 30
minute time-out; 16.39% of properties per instruction are
undetermined. RTL2MµPATH/SYNTHLC can be configured to
interpret undetermined model checker outcomes (§V-B) as
reachable or unreachable. We do the latter (§VII-B4). For
leakage signature synthesis for the Core, SYNTHLC evaluates
30,774 (additional) properties for 2.35 minutes per property on
average under the same time-out; 13.74% are undetermined.
Interestingly, for the Cache, all 4,178 properties evaluated
by RTL2MµPATH/SYNTHLC complete within 3 seconds on
average, highlighting the benefits of modularization. We use
RTL2MµPATH to uncover revisit cycle counts (§V-B6) on the
Core only, evaluating 8,043 additional properties in 32 seconds
on average with a 10 minute time-out; 0.7% are undetermined.

4) Soundness/Completeness: When discussing theoretical
guarantees of RTL2MµPATH/SYNTHLC, we assume that there
are no undetermined model checker outcomes. Recall that all
SVAs are evaluated from a valid reset state of the DUV (§V-B).

The RTL2MµPATH procedure is theoretically sound: if it
outputs µPATH p for instruction I, then an execution trace
where I exhibits p, was deemed reachable on the DUV. And
it is theoretically complete: if it does not output µPATH p for
instruction I, then such a trace was deemed unreachable.
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Interpreting undetermined model checker outcomes as un-
reachable (§VII-B3) impacts RTL2MµPATH’s completeness
guarantee. If RTL2MµPATH does not output µPATH p for
instruction I due to an undetermined outcome, there is a
chance that I exhibits p in some reachable trace. Our manual
inspection of RTL2MµPATH’s output for CVA6 suggests most
undetermined µPATHs would eventually resolve as unreach-
able. Such µPATHs usually feature instructions visiting PLs in
unrelated functional units (e.g., an ADD visiting a STB PL).

The SYNTHLC procedure is theoretically sound: If it classi-
fies some candidate transponder P’s decisions at source PL src
as independent of some transmitter T’s unsafe operand op, then
it is indeed independent. That is, an execution trace (on the
IFT-augmented DUV), where op introduces taint, P exhibits
decision (src,dst), and dst is becomes tainted, was deemed
reachable for at most one such decision and unreachable
for all others (§V-C1). However, SYNTHLC is theoretically
incomplete: such an execution trace may be deemed reachable
for more than one such decision even if P’s decisions at src
are independent of op, due to imprecision of symbolic IFT.

We are optimistic that we can leverage established IFT
techniques to minimize false positive leakage flagged by
SYNTHLC, e.g., custom taint propagation rules to reduce taint
spread [75] or specialized taint flushing mechanisms to prevent
over-taint in shared buffers (e.g., the SCB) [77].

Interpreting undetermined model checker outcomes as un-
reachable impacts SYNTHLC’s soundness guarantees. That
is, if SYNTHLC classifies some transponder’s decision at
some source PL as independent of some transmitter’s unsafe
operand due to an undetermined outcome, it may actually be
dependent in some reachable trace. Nevertheless, our cache
evaluation suggests that this issue can be addressed through
DUV decomposition and modular verification.

In practice, SYNTHLC automatically localizes side-channel
leakage in RTL with exceptional precision.

VIII. RELATED WORK

Contract Verification: No existing approaches can verify
hardware adherence to leakage contracts as detailed as leakage
signatures. The closest prior work verifies hardware adherence
to CT contracts [32], [36], [38], [91] by checking some version
of Eq. V.1 in one shot with varying receiver assumptions using
a product circuit formulation—two copies of the DUV are
instantiated and analyzed together. These methodologies are
all theoretically incomplete due to their use of symbolic initial
states (all registers are symbolic), which enable the product
circuit approach to scale at the cost of false counterexamples.
Notably, the user must manually inspect counterexamples to
classify them as false and add constraints to avoid them.
All but UPEC-DIT [32] are theoretically sound, i.e., ignoring
model-checker limitations.

UPEC-DIT [32] is a CT contract synthesis approach.
LEAVE [91] and UPEC-DIT-23 [31] are CT contract satis-
faction approaches. CONJUNCT [36] is both.

UPEC-DIT [32] inputs include the DUV’s operand registers,
commit signal, existing PCRs, ARF, AMEM, and IFR (§V-A).

During synthesis, the user manually classifies registers as
control/data upon counterexample inspection, attributes con-
trol value divergence to instruction operands, and writes as-
sumptions to avoid spurious counterexamples. For CVA6, this
amounts to refining over a hundred lines of SVA properties [6].

LEAVE’s inputs include all of UPEC-DIT’s, except PCRs,
plus design invariants and extra internal design signals that
may hold unsafe transmitter operands. It tries to automatically
refine the invariants to construct an inductive proof, but
requires updating them upon a (manually detected) spurious
proof failure. Note, “[LEAVE] does not yet scale to processors
of the complexity of, e.g., the CVA6 core” [66]. Over twenty
lines of invariants are needed for an Ibex core variant [5], [54].

UPEC-DIT-23’s inputs include UPEC-DIT’s plus a list of
transmitters. During verification, the user writes invariants
to exclude false counterexamples and performs manual tasks
from UPEC-DIT. Over a hundred of lines of invariants [7] are
needed in addition to the property refinement from UPEC-DIT.

CONJUNCT [36] inputs are the same as UPEC-DIT’s.
Its synthesis step classifies each instruction as a candidate
(non-)transmitter via a bounded analysis. Its verification step
uses automatically-generated candidate invariants to conduct
unbounded verification that the set of non-transmitters indeed
contains no transmitters. Upon misclassification (during syn-
thesis) or proof failure (during verification), the user inspects
traces and constructs assumptions to avoid false positive
transmitters or invariants to derive complete proofs, respec-
tively. The authors evaluate in-order pipelines, where few
non-transmitters are misclassified as transmitters. One pipeline
required carefully-constructed assumptions to cull false posi-
tives due to unreachable states. Out-of-order designs (that use
SCBs, ROBs, etc.) will require more of these constraints, and
therefore commensurately more manual effort.

IX. CONCLUSION

We design the first automated approach and tool for un-
covering all microarchitectural execution paths for instructions
as implemented on a particular SystemVerilog processor de-
sign. In doing so, we observe that such path variability can
be used to localize hardware side channels—a requirement
for designing defenses against hardware side-channel attacks.
Subsequently, we design the first automated approach and tool
for synthesizing microarchitectural leakage contracts, required
by ten defenses, from processor RTL.
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APPENDIX I
ARTIFACT APPENDIX

A. Abstract
This artifact uses RTL2MµPATH and SYNTHLC to conduct

multi-µPATH and leakage signature synthesis, respectively, on
the RISC-V CVA6 CPU [100].

B. Artifact check-list (meta-information)
• Data set:

– Original CVA6 SystemVerilog design as the design under
verification (DUV)

– IFT-instrumented CVA6 SystemVerilog design as the DUV
– RTL2MµPATH and SYNTHLC code base, implemented using

Python3, SVA, and TCL.
• Run-time environment:

– Cadence JasperGold: For evaluation of SystemVerilog Asser-
tion (SVA) properties generated by both tools.

• Output:
– Complete runs of RTL2MµPATH and SYNTHLC on CVA6

with respect to a subset of instructions from the RISC-V ISA
(ADD, DIV, LW, SW, BEQ) to derive the following: 1) µPATHs
(Fig. 2b, 2c, and 4) for these instructions, and 2) leakage
signatures corresponding to this subset of the ISA.

– Complete run of SYNTHLC seeded with µPATHs for the
whole ISA to reproduce the leakage signatures as in Fig. 8.

• Approximate total time: The execution time primarily de-
pends on how many JasperGold jobs the machine can run in
parallel, which depends on the core number and the memory of
the machine. The execution time provided below is tested on
a machine with 128 cores and 700GB memory and configured
to run N = 3 jobs in parallel. For a machine with only 48-64
cores, we recommend configuring the machine to run N = 2
jobs in parallel (more details in §I-F). Lastly, the execution time
reported below roughly scales with a factor of 3/N .
– For the first two experiments (µPATHs and leakage signatures

for ADD, DIV, LW, SW, BEQ), ∼47 (∼71) hours if the machine
is configured to run N = 3(2) JasperGold jobs in parallel.

– For the third experiment (complete reproduction of all leak-
age signature in Fig. 8), the total time can take over 16
days. But this step is incremental and can produce results
at a rate of about one leakage signature (a column of the
Fig. 8) every 10×3/N ∼ 40×3/N hours when machine runs
N jobs in parallel, depending on the number of decisions
the leakage signatures control. While one can stop early, to
produce minimal set of results as discussed in our experiment
workflow (§I-F) will take minimally 100 hours or so.

In summary, the total runtime is around minimally 150 hours
to see the results discussed in the instructions files (§I-F).

• Archived (provide DOI)?:
https://doi.org/10.5281/zenodo.13288445

C. Description - How to access
All files including data set, code base, and instructions can be

found at https://github.com/yaohsiaopid/synthlc.

D. Software Dependencies
• JasperGold for SVA evaluation
• Python3 and packages including networkx, cvc5, pandas, and

matplotlib for the execution of RTL2MµPATH and SYNTHLC
• Graphviz for visualization

E. Installation
• Please follow the steps in this file to install and check software

dependencies: 00-installation.md

F. Experiment workflow
The cloned repository includes a series of instruction files at

the top level. They will walk you through the evaluation of
RTL2MµPATH and SYNTHLC on CVA6. Please follow these in-
structions in the following order: 01-setup.md, 02-duvpl-
dfg.md, 03-rtl2mupath, 04-synthlc.md, 05-5instn-
isa.md, and 06-lc-table.md.

G. Evaluation and expected results
1) 01-setup.md: This instruction file walks through annotation

preparation for CVA6 (§V-A), design augmentation (Table II),
and formal environment setup for SVA property evaluation.
We also provide instruction to configure N , the number of jobs
the machine will run in parallel during SVA property evaluation
steps. The estimated runtime mentioned below assumes N = 3.

2) 02-duvpl-dfg.md: This instruction file walks through DUV
PL derivation (§V-B1) and DFG Analysis (§V-B5), both of
which are used by RTL2MµPATH to explore the execution
behavior of all IUVs.

3) {03-rtl2mupath,04-synthlc}.md: These two instruc-
tion files compose the first experiment of this artifact. They
explain how to run the end-to-end flow of RTL2MµPATH and
SYNTHLC on a DIV instruction under a restricted execution
assumption, which enables the entire experiment finish within
seven hours (without this assumption, this may take many days).
Specifically, RTL2MµPATH is configured to explore the execu-
tion of DIV when it is issued at the first cycle after the valid reset
state (§V-B) and followed by no other valid instructions; while
SYNTHLC takes in these restricted set of µPATHs, but assumes
DIV can be preceded/followed by any of the five instructions
mentioned earlier (ADD, DIV, LW, SW, BEQ) to synthesize a set of
leakage signatures.
This experiment illustrates the detailed flow of Fig. 6, show-
casing properties automatically generated and evaluated (§V-B
and §IV). It reproduces the following key results (§VII):
• RTL2MµPATH automatically uncovers sixty-six cycle accu-

rate µPATHs for DIV, a subset of all µPATHs uncovered in
our full case study (§VI), but a sufficient amount to supply
to and demonstrate the functionality of SYNTHLC.

• SYNTHLC synthesizes two leakage signatures from this
restricted set of DIV µPATHs and labels DIV as an intrinsic
and dynamic transmitter.

• SYNTHLC finds DIV is transponder for BEQ and LW/SW
dynamic transmitters as a function of their rs1/rs2 and rs1
operands, respectively.

4) 05-5instn-isa.md: The second experiment of this artifact
steps through a reproduction of the µPATHs in Fig. 2b, 2c, and
4. To shorten runtimes, we consider a restricted RISC-V ISA
that implements the following five instructions: ADD, BEQ, LW,
SW, and DIV. This experiment can take a total of 40 hours.

5) 06-lc-table.md: The last experiment of this artifact re-
produces Fig. 8. First, we include in our dataset the full set
of µPATHs synthesized by RTL2MµPATH for CVA6 (for all
72 instructions in the RV64IM ISA) in our submission-time
case study (§VI), since RTL2MµPATH can take a significant
amount of time to explore all 72 instructions. Second, given
these µPATHs, this experiment will deploy SYNTHLC to incre-
mentally synthesize a comprehensive set of leakage signatures
(Fig. 8 columns) one at a time using SVA property generation
and evaluation (§V-C1). The flow can take over a week or more
to finish depending on one’s machine. One can stop the process
early to observe a partial version of Fig. 8. This experiment
primarily aims to showcase the details of SYNTHLC, which is
the culminating contribution in this paper.
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