
Universal algebra over lambda-terms and nominal terms:
the connection in logic between nominal techniques

and higher-order variables

Murdoch J. Gabbay Dominic P. Mulligan

Abstract
This paper develops the correspondence between equality reason-
ing with axioms using λ-terms syntax, and reasoning using nomi-
nal terms syntax. Both syntaxes involve name-abstraction: λ-terms
represent functional abstraction; nominal terms represent atoms-
abstraction in nominal sets.

It is not evident how to relate the two syntaxes because their
intended denotations are so different. We use universal algebra,
the logic of equational reasoning, a logical foundation based on an
equality judgement form which is spartan but which is sufficiently
expressive to encode mathematics in theory and practice.

We investigate how syntax, algebraic theories, and derivability
relate across λ-theories (algebra over λ-terms) and nominal algebra
theories.

Categories and Subject Descriptors F.4.1 [Mathematical logic]

Keywords Universal algebra, lambda-theories, nominal algebra,
permissive nominal terms.

1. Introduction
λ-terms are a useful and important syntax in computer science.
Nominal terms, from [32], have been more recently developed.
What makes both λ-term syntax and nominal term syntax inter-
esting is that they represent name-binding, but they do this in two
different ways:

• The basic equality for λ-terms is αβ(η)-equivalence. The no-
tion of substitution is capture-avoiding. The standard semantics
of name-abstraction is functional abstraction.
• The basic equality for nominal terms is a generalised form

of α-equivalence (without β or η). The notion of substitution
is capturing. The standard semantics of name-abstraction is
non-functional, and uses an atoms-abstraction construction in
Fraenkel-Mostowski sets (documented in [19]).

Universal algebra, the theory of equality, is perhaps the simplest
non-trivial logics. This paper develops the correspondence between
derivability in equational theories over λ-terms (λ-theories), and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LFMTP ’09, August 2, 2009, Montreal, Canada.
Copyright c© 2009 ACM 978-1-60558-529-1/09/08. . . $10.00

derivability in equational theories over nominal terms (nominal
algebra theories).

This is the simplest forum within which to address the following
question, which has been of interest right from the introduction of
nominal techniques in [10, 19]:

“What connections can be made between reasoning using
names and binding based on λ-abstraction, and between rea-
soning using names and binding based on nominal atoms-
abstraction?”

For illustration, we consider some statements about first-order
logic and λ-calculus, as written in the informal but rigorous lan-
guage of mathematical discourse, and translate them to equalities
on λ-terms and on permissive nominal terms:

• “If a does not occur in φ then ∀a.φ if and only if φ.”
• “If a does not occur in φ then ∀b.∃a.φ if and only if ∃a.∀b.φ.”
• “If a does not occur in t then λa.(ta) is equal to t.”
• “(λb.t)b is equal to t always.”

Suppose X is a permissive nominal unknown with permissions
set p(X) = comb, and suppose b ∈ comb and a 6∈ comb (so in-
tuitively, X may be instantiated to a term mentioning b free but not
mentioning a free; formal definitions are in the body of the paper).
Then translations are as in the following small table:

λ-terms nominal terms

∀λa.c = c ∀[a]X = X
∃λa.∀λb.(cb) = ∀λb.∃λa.(cb) ∃[a]∀[b]X = ∀[b]∃[a]X

lamλa.(ca) = c lam[a](Xa) = X
(lamλb.c)b = c (lam[b]X)b = X

Here, quantifiers feature as term-formers, and their binding be-
haviour is handled by (λ/nominal)-abstraction; this is standard. In
the case of λ-terms, the possibility of capture is implemented us-
ing application. In the case of nominal terms, capture-avoidance is
enforced by using names that are not in the permissions set comb.

Note here that lam is a term-former intended to represent λ-
abstraction — whose behaviour, in the left-hand column but not in
the right-hand column, is axiomatised using a λ-abstraction of a
λ-terms syntax.

There are no types above, nor in the syntax we develop below.
We believe that types could easily be added to the proofs which fol-
low, and then it would be possible for example to make distinctions
between variables ranging over a type of truth-values and variables
ranging over a type of individuals. To the level of detail that inter-
ests us here, an untyped syntax is sufficient.

Some details of our translation between λ-terms syntax and
nominal terms syntax are subtle; the translations of substitutions

http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8/

and theories in particular are delicately assembled. Full details are
in the body of the paper.

However, it is not hard to give an overview of the technical
ideas involved, and they resonate with other work. We account
for the capturing substitution in nominal terms by translating to
‘raised’ λ-terms, as in previous work [7, 6, 23]. Nominal atoms-
abstraction intuitively satisfies α-equivalence (not β or η), so the
translation identifies λ-theories with nominal algebra theories con-
taining ULAME, a theory which has been identified in previous
work as axiomatising αβη-equivalence [16, 18] (see also Defini-
tion 14).

The translation works for ‘sufficiently large’ finite-variable
fragments of both languages. As in [7] we do not present a sin-
gle fixed translation of terms and derivations and we suspect (but
do not prove) that such a translation does not exist. Our results only
work for αβη-equivalence: αβ seems to be harder. Details follow
in the body of the paper.

We will now briefly motivate algebra as a canonical ‘simple but
useful’ logic, and discuss issues in the design of algebraic logics.

Algebraic logic. Algebraic logic is the theory of derivable equal-
ity between terms. For example, ‘universal algebra’ [4] is the theory
of equality between first-order syntax (syntax made of variables
and term-formers, also called function symbols). An algebraic the-
ory is just a collection of equalities which are asserted as axioms,
and any model of an algebraic theory should interpret derivably
equal terms as denotationally identical elements.

The judgement-form of algebra is r = s. This might seem
limited; for example there is no implication, so we cannot say ‘if’
or ‘but’. Yet surprisingly complex theories can be expressed using
just equalities, and then the limitations become an asset: if we know
that r = s then we can interchange r and s — with no ‘if’s and
‘but’s. This is particularly useful for compositional reasoning, and
that may be one reason that equality reasoning has been chosen as
the foundation of some large-scale implemented reasoning systems
like [20]. Also, logics of equality enjoy powerful mathematical
properties, like the HSP theorem [4, 11], which can be exploited
to prove non-trivial properties of algebraically-specified logic and
computation [25, 1, 29].

So universal algebra is interesting and important; in this paper,
we use equality as a logical judgement-form with which to explore
the implications of reasoning on different syntaxes with names and
binding.

Choosing a syntax for algebra: first-order, higher-order, and
nominal. When we design an algebraic logic we cannot choose
our logical connectives — because there are none — but we have
freedom in what syntax we use for r and s. So what syntax should
we use?

Equality over just first-order syntax is a suitable framework
for some exceedingly complex mathematics; consider for example
combinators and their theory. It is also possible to study systems
with binding using the so-called cylindric method [22]. This fixes a
term-former for each binder; for example the spirit of cylindric al-
gebra is that we axiomatise first-order logic in univeral algebra, and
this has one term-former for ∀x, another for ∀y, and so on; likewise
Salibra’s λ-abstraction algebras [30, 25] axiomatise λ-calculus in
universal algebra, and they have one term-former for λx, another
for λy, and so on (so cylindric algebra and λ-abstraction algebras
use infinitely many term-formers, and infinitely many axioms).

However, it is still important to consider algebra over syntax
with primitive support for binding. This is motivated by the need
for the mathematical study of informal practice, and the creation of
computing systems which match informal practice and are backed
by rigorous formal methods.

One syntax extending first-order syntax with binding is λ-terms
syntax quotiented by αβ- or αβη-equivalence. This is relevant
to practice as well as theory: µCRL2 is an algebraic reasoning
framework [20] which includes functions for usability and natural
expressiveness [21]; in his book [2] Peter Andrews presents a logic
Q0 for mathematics as an equational theory on (typed) λ-terms;
λ-theories are equational theories on λ-calculus syntax including
αβ-equivalence, studied by mathematicians, e.g. [24].

Nominal terms [32] provide primitive support for binding, via
a generalisation of α-binding. Nominal algebra [17] is the logic of
equality on nominal terms, introduced in [12, 13, 26]. It has been
tested as a logical framework, at least in principle, by using it to
axiomatise the λ-calculus and first-order logic [18, 15].
λ-terms’ natural denotation uses functions. In contrast, nominal

terms admit a denotation in a cumulative sets hierarchy in which
name-abstraction is interpreted using a non-functional abstraction
operation described in [19] with properties much like those of an
α-equivalence class (we do not consider denotations in this paper).

Translations between nominal unification [32] and higher-order
patterns [28] have been considered; by Cheney [5], Levy and Vil-
laret [23], and most recently by Dowek and the authors [7, 6]. This
recent work uses a permissive variant of nominal terms, which of-
fers advantages documented in [7, 6] and in this paper; to a first
approximation we can ignore the difference, but this paper is self-
contained and includes all relevant details of the permissive nomi-
nal syntax.

A difference between [23] and [7] is that [23] translates unifi-
ability whereas [7] translates unification problems and their solu-
tions. Now a substitution solving a unification problem is in a sense
a ‘derivation’ or ‘proof-object’ for its unifiability.

In this paper we use the same basic ideas as in [7], but we extend
them and take on the more complex task of translating derivations
of equality in the presence of axioms (i.e. we translate derivations
of equality modulo an arbitrary theory). This adds some technical
complexity which the permissive nominal framework handles very
well, but beyond that, this paper gives the details of a translation be-
tween logical reasoning over a functional syntax expressive enough
to be a framework for mathematics, and a similarly expressive one
over a nominal syntax.

2. Algebra-with-binding: nominal algebra and
λ-theories

2.1 Permissive nominal algebra
We define permissive nominal terms (Definition 7). This features
a two-level syntax inherited from [32], and a capturing substitu-
tion (Definition 10). We define an equational theory on permissive
nominal terms (Definition 13); the notions of equational theory and
derivability are are based on those in [12, 14, 17], but here we use
a permissive nominal syntax. Proving properties of the connection
between nominal algebra and the permissive variant in this paper,
is future work; it will be similar to the relation between nominal
unification and permissive nominal unification [7].

We define an equational theory ULAME (Definition 14); it is
shown in [18] that we can think of this as ‘βη for nominal atoms-
abstraction’. We will need this theory because our translation iden-
tifies the (weak) nominal atoms-abstraction with the (relatively
strong) λ-terms functional abstraction.

Definition 1. Fix a countably infinite set A of atoms. a, b, c, . . .
will range over distinct atoms (we call this the permutative con-
vention). Fix a set of term-formers. f, g, h will range over distinct
term-formers.

Definition 2. If f is a function from atoms to atoms define
nontriv(f) = {a | f(a) 6= a}.1

Definition 3. A permutation π is a bijection on atoms such that
nontriv(π) is finite. π and π′ will range over permutations (not
necessarily distinct).

Write π ◦ π′ for the composition of π and π′ (so (π ◦ π′)(a) =
π(π′(a))). Write id for the identity permutation (so id(a) = a
always). Write (a b) for the swapping permutation that maps a to
b and b to a and all other c to themselves.

Definition 4. If S ⊆ A, define the pointwise action by:

π · S = {π(a) | a ∈ S}

Definition 5. Call S ⊆ A co-infinite when A \S is infinite. Fix an
infinite, co-infinite set comb ⊆ A.

A permission set has the form π · (comb \ A) for a finite set
A ⊆ A. S, S′, T will range over permission sets.2

Definition 6. For each permission set S fix a disjoint countably
infinite set of unknowns of sort S. X , Y , Z, will range over
distinct unknowns. We write p(X) for the permission set of X .

Definition 7. Define (permissive nominal) terms by:

r, s, t, . . . ::= a | π ·X | f | [a]r | r′r

We write ≡ for syntactic identity; r ≡ s when r and s denote
identical terms.

Note that X (the unknown) is not a term, however π · X is a
term and in particular id ·X is a term, which we may write as X .

The intended interpretation of permissive nominal terms follows
the interpretation of nominal terms [32]: atoms represent variables;
term-formers functions; unknowns meta-variables; abstraction [a]r
binding; and π · X a meta-variable with a suspended substitution,
like ‘t[y/x]’. The application r′r in this syntax is a priori just a
convenient way to attach terms together; we could just as well have
terms like f(r1, . . . , rn). For our purposes in this paper, it is more
convenient to take as primitive a binary operator.

Definition 8. Define a permutation action by:

π · a ≡ π(a) π · f ≡ f π · (r′r) ≡ (π · r′)(π · r)
π · [a]r ≡ [π(a)](π · r) π · (π′ ·X) ≡ (π◦π′) ·X

Definition 9. Define free atoms fa(r) by:

fa(a) = {a} fa(f) = ∅ fa(r′r) = fa(r′) ∪ fa(r)

fa([a]r) = fa(r)\{a} fa(π·X) = π·p(X)

Note that fa(π ·X) = π · p(X). An intuition for fa(r) is ‘the
free atoms we can have after instantiation’. Since r may contain
unknowns X , this need not be finite, though for each complete
instantiation of r the free atoms will be finite.

Definition 10. A substitution θ is a function from unknowns to
terms such that fa(θ(X)) ⊆ p(X) always (so p(X) describes the

1 We call this the support of π in [19]. There, ‘support’ has a specific tech-
nical meaning in the universe of Fraenkel-Mostowski sets. Here, we prefer
nontriv (for ‘nontrivial’) because the terminology immediately suggests
its definition.
2 Two notes about previous work:
Nominal sets [19] disallow comb because it lacks finite support; here, we
are working at the meta-level, and we can talk about any subset we like.
In [7, 6] we allow slightly more permissions sets, of the form (comb∪B)\
A for finite B. What we have defined here, will be enough for our needs.

‘permission’ we have to instantiate X , namely to terms with free
atoms in S).3

θ will range over substitutions.
Write id for the identity substitution mapping X to id ·X

always. It will be clear whether id means the identity substitution
or permutation.

Suppose fa(t)⊆p(X). Write [X:=t] for the substitution such
that [X:=t](X) ≡ t and [X:=t](Y) ≡ id · Y for all other Y .

Definition 11. Define a substitution action on terms by:

aθ ≡ a fθ ≡ f (r′r)θ ≡ (r′θ)(rθ)

([a]r)θ ≡ [a](rθ) (π·X)θ ≡ π·θ(X)

Consistent with [32] substitution for unknowns is capturing for
abstraction by atoms. Note that Xθ means ‘θ acting on id ·X’ and
θ(X) means ‘the function θ at X’.

We now set about defining permissive nominal algebra.

Definition 12. An axiom is a pair r = s. A (permissive nominal
algebra) theory is a set of axioms. T will range over theories.

Definition 13. Define derivable equality = by:

r = s s = t
(Ntran)

r = t
(Nrefl)

r = r

r = s
(Nsym)

s = r

r = s
(Nabs)

[a]r = [a]s
r′ = s′ r = s

(Napp)
r′r = s′s

(a, b 6∈ fa(r))
(Nα)

r = (a b) · r
(Naxπ,θr=s)

π · (rθ) = π · (sθ)

If T is a theory, write T ` r = s when r = s is derivable, using
only instances (Naxπ,σr′=s′) where (r′ = s′) ∈ T.

Π will range over derivations.

Definition 14. Let a, b ∈ comb. LetX ,Z, andZ′ have permission
set comb. Let Y ′ have permission set comb \ {b}. Let X ′ have
permission set comb \ {a}. Define a theory ULAME by:

([a]a)X = X (Nβvar)
([a]X ′)X = X ′ (Nβ#)
([a]Z)a = Z (Nβid)
([a]([b]Z))Y ′ = [b](([a]Z)Y ′) (Nβabs)
([a](Z′Z))X=

(([a]Z′)X)(([a]Z)X)
(Nβapp)

[a](X ′a) = X ′ (Nη)

Remark 15. ULAME is a set with six elements. It is not an infinite
set determined by axiom-schemes.

The choice of atoms and unknowns in the axioms of ULAME
is not important because (Nax) has facilities to rename atoms
permutatively using a permutation π, and to instantiate unknowns
using a substitution θ. The choice of atoms and unknowns in the
axioms of ULAME can be important for the technical details of the
proofs; see for example the case of (Lβ#) in Theorem 51.

ULAME originates in [16, 18], where the theory is proved sound
and complete for λ-terms quotiented by αβη-equivalence (with no
other equalities).

Example 16. Suppose p(X)=p(Y)=comb and a, b∈comb. We
sketch two ULAME derivations in calculational style; the full

3 ‘fa(θ(X)) ⊆ p(X)’ looks absent in nominal terms theory ([32, Defini-
tion 2.13], [9, Definition 4]), yet it is there: see the conditions ‘∇′ ` θ(∇)’
in Lemma 2.14, and ‘∇ ` a#θ(t)’ in Definition 3.1 of [32].

derivation trees can easily be reconstructed:

([b]([a]X))Y = ([b]([a′](a′ a) ·X))Y (Nα) a, a′ 6∈fa([a]X)
= [a′](([b]((a′ a) ·X))Y) (Nβabs)

([b]([a]b))a = ([b]([a′]b))a (Nα) a, a′ 6∈fa([a]b)
= [a′](([b]b)a) (Nβabs)
= [a′]a (Nβvar)

Here, we choose a′ fresh, so a′ 6∈ comb (and by our permutative
convention a′ is not equal to a or b).

Definition 17. Define fV (r) by:

fV (a) = ∅ fV (f(r1, . . . , rn)) = fV (r1) ∪ · · · ∪ fV (rn)

fV ([a]r) = fV (r) fV (π·X) = {X}
Lemma 18 is a key difference from nominal terms. Later, when

we write ‘choose a fresh’, we are using Lemma 18:

Lemma 18. A \ fa(r) is always infinite.

Proof. By induction on r. We consider one case: fa(π · X) =
π · p(X) and by assumption A \ (π · p(X)) is infinite.

The following lemmas are proved by inductions just as in [32]:

Lemma 19. id · r ≡ r, and π′ · (π · r) ≡ (π′ ◦ π) · r.

Lemma 20. π · fa(r) = fa(π · r).

Lemma 21. π · (rθ) ≡ (π · r)θ.

2.2 λ-theories
Just as we did for nominal terms, we define λ-terms syntax
and their (standard) capture-avoiding substitution action (Defini-
tions 22 and 26). We define a notion of derivable equality (Defini-
tion 28) up to αβη-equality, plus equational axioms; this is similar
to Andrews’s equational axiomatisation Q0 [2] and to the axioms
of Salibra’s Lambda-Abstraction Algebras [30].

Note that we need η-equivalence for our later proofs to work.
The use of η-equivalence is consistent with other work, e.g. on
higher-order unification [8]. η-equivalence does sometimes make
theory easier; this paper is a case in point. We do not know if our
constructions can be made to work without η, perhaps in a more
complicated form.4

Definition 22. Define λ-terms by:

g, h, . . . ::= a | X | f | λa.g | g′g
Here f ranges over term-formers, a ranges over atoms, and X
ranges over unknowns. g, h, k will range over λ-terms.

Definition 23. Define a permutation action by:

π·a ≡ π(a) π·X ≡ X π·f ≡ f

π·(λa.g) ≡ λπ(a).(π·g) π·(g′g) ≡ (π·g′)(π·g)

Definition 24. Define free atoms by:

fa(a)={a} fa(X)=∅ fa(f)=∅
fa(λa.g)=fa(g)\{a} fa(g′g)=fa(g′)∪fa(g)

Definition 25. Call a function σ from unknowns to λ-terms a (λ-
calculus) substitution. σ will range over substitutions.

Write [X:=h] for the substitution which mapsX to h and maps
all other Y to Y .

4 To be specific: we use η-equivalence in Lemma 58. We need something
like this result for Theorems 62 and 65. If we drop η then we should mod-
ify the translations J-KD and L-MD to be ‘more intelligent’, i.e. more com-
plicated, to compensate so that the η-equivalence of Lemma 58 becomes
syntactic identity or perhaps an αβ-equivalence.

Definition 26. Define the capture-avoiding substitution action
gσ on λ-terms by:

aσ ≡ a Xσ ≡ σ(X) fσ ≡ f (g′g)σ ≡ (g′σ)(gσ)

(λa.g)σ ≡ λa.(gσ) (a 6∈
S
{fa(σ(X)) | X ∈ fV (g)})

(λa.g)σ ≡ λb.(((b a)·g)σ) (a ∈
S
{fa(σ(X)) | X ∈ fV (g)})

Definition 27. An axiom is a pair g = h. A (λ-)theory is a set of
axioms. L will range over theories.

Definition 28. Define derivable equality by:

g = g′ g′ = g′′
(Ltran)

g = g′′
(Lrefl)

g = g

g = h
(Lsym)

h = g

(Lβvar)
(λa.a)g = g

(a 6∈ fa(h))
(Lβ#)

(λa.h)g = h

(Lβid)
(λa.h)a = h

(b 6∈ fa(g))
(Lβλ)

(λa.(λb.h))g = λb.((λa.h)g)

(Lβapp)
(λa.(h′h))g = ((λa.h′)g)((λa.h)g)

(a 6∈ fa(g))
(Lη)

λa.(ga) = g

g = h
(Lλ)

λa.g = λa.h

g = g′ h = h′
(Lapp)

gh = g′h′

(a, b 6∈ fa(g))
(Lα)

g = (a b) · g
(Laxσg=h)

gσ = hσ

Write L ` g = h when g = h is derivable using only instances
(Laxσg′=h′) for (g′ = h′) ∈ L. Also:
- Write g =αβη h when ∅ ` g = h.
- Write g =αβ h when ∅ ` g = h with a derivation that does not

use (Lη).
- Write g =η h when ∅ ` g = h with a derivation that does not

use (Lα), (Lβvar), (Lβ#), (Lβid), (Lβλ), or (Lβapp).
- Write g =α h when ∅ ` g = h with a derivation that does not

use (Lη), (Lβvar), (Lβ#), (Lβid), (Lβλ), or (Lβapp).
Λ will range over derivations.

Remark 29. Some comments on the provenance of these rules:
- (Lrefl), (Lapp), (Lλ), and (Ltran), have to do with equality

and are as one would expect.
- (Laxσg=h) is the axiom rule. The substitution σ allows us to

instantiate unknowns in axioms (atoms can be substituted for
using λ-abstraction and β-reduction).

- Other axioms are adapted from Andrews’s logic Q0 [2], which
includes equality axioms for β-conversion (though they also look
a lot like Salibra’s axioms of Lambda-Abstraction Algebras [25,
Definition 20], and probably like other similar axiomatisations
too).5

(Lβvar), (Lβid), (Lβλ), and (Lβapp) are exactly Andrews’s
axioms (42), (44), and (43). In the presence of α-conversion,
rules (43) and (44) let us ‘push a β-reduct into a term’ and it is
a fact that they give the power of (Lβ#).
(Lη) is η-equivalence. Andrews’s system does not include η —
if it had, it would probably have looked like (Lη).
(Lα) is α-equivalence. Andrews’s system includes an extension-
ality axiom expressed using an axiomatised ∀ quantifier ((3αβ)
in [31, page 20]). It is possible to derive every instance of (Lα)
in Q0. Since we do not axiomatise ∀, we must include (Lα)
(compare also with [25, Definition 20, rule (α)]).

5 We first obtained the axioms from Tan’s thesis [31]. We are grateful for
his clear and accessible presentation of Andrews’s work.

3. Translating nominal terms into the λ-calculus
We are now ready to translate nominal terms to λ-terms (Defini-
tion 35). The translation follows [7] and is indexed by a vector of
atoms (Definition 30).

What does this vector mean? A difference between nominal
terms and λ-terms is that the former permits capturing substitution
and the latter does not. However, as is well-known, the effect of
a capturing substitution can be obtained in λ-terms by ‘raising’.
For example, the effect of the nominal term [a]X can be obtained
by λa.(Xa), and the effect of the capturing substitution [X:=a]
on the nominal term [a]X can be obtained by the capture-avoiding
substitution [X:=λa.a]. Here, X is ‘raised’ over a.

Intuitively, the vector of the translation maps nominal terms to
‘raised’ λ-terms; we raise over the indexing vector, thus deciding
once and for all, for each vector chosen, for which atoms we permit
capture. There is no canonical vector to raise over, but if we are
given a derivation in nominal algebra then we can raise over the
atoms in that derivation and, with a little further work, obtain a
valid derivation in λ-calculus. This is Theorem 43.

The translation maps nominal terms atoms-abstraction [a]r to
λ-terms functional abstraction λa.g. Therefore, we also verify that
the axioms in ULAME translate to validαβη-equivalences between
λ-terms (Theorem 45).

Because theories may be infinite, we do not collect all the atoms
mentioned in a theory when we decide on an index to translate
it. Instead, we calculate the appropriate vector on an axiom-by-
axiom basis (JTK, Definition 35). One unfortunate side-effect of
this is that when we try to use the translation of an axiom in the
translation of a derivation, the vectors may not match and we may
need to ‘reindex’. This is achieved by indexing the translation of
substitutions JθKED in Definition 35 over two vectors of atoms. The
same thing happened in [7] but for apparently different technical
reasons, and there may be some mathematics here to be brought
out proving the inevitability of this, in future work.

3.1 The translation J-KD , and its compositionality
We define the translation in Definition 35, and we prove a compo-
sitionality result (Theorem 40) for substitution relative to the trans-
lation; as discussed above, it is convenient to build into this result
the possibility to ‘reindex’ from a vector D to a vector E (this did
not happen in [7]). Note that compositionality holds only if there
are ‘enough atoms’, where ‘enough’ varies depending on the com-
plexity of the term and substitution we are considering.

Definition 30. Call a finite list of distinct atoms a vector. D will
range over vectors. Write [d1, . . . , dn] for the vector containing d1,
. . . , dn in that order.

Definition 31. We use the following notation: SupposeA ⊆ A.
- Write D ∩ A for the vector of atoms in D that occur in A, in

order; thus [a1, a2, a3] ∩ {a1, a3, a5} = [a1, a3].
- Write D ⊆ A when every atom in D is in A.
- Write A ⊆ D when every atom in A is in D.
- Write D ∪A for the set of atoms appearing in D or A.
- If D and D′ are vectors, write D ⊆ D′ when every atom in D

is contained in D′ (not necessarily in the same order).
- If π is a permutation and D = [d1, . . . , dn], write π ·D for the

vector [π(d1), . . . , π(dn)] (the pointwise action).

Definition 32. Suppose D = [d1, . . . , dn]. Write λD.g as short-
hand for λd1. . . . λdn.g (a list of λ-abstractions). Write g D as
shorthand for g d1 . . . dn (a list of applications).

Definition 33. Write atoms(D) for the set of atoms appearing in
D. Similarly write atoms(r) for the set of atoms appearing in r
(for example, atoms((a b) ·X) = atoms([a][b]X) = {a, b}); an

inductive definition will be in a longer version of this paper. We
will extend this notation to other tree-like structures as convenient,
including to derivations (as in atoms(Π)) and to theories (as in
atoms(ULAME)).

Definition 34. For each finite set of atoms S make a fixed but
arbitrary choice of order on S.

Definition 35. Translate a nominal term r to a λ-term JrKD by:

JaKD ≡ a Jπ ·XKD ≡ X(π · (D ∩ p(X)))

J[a]rKD ≡ λa.JrKD Jr′rKD ≡ Jr′KDJrKD JfKD ≡ f

Extend the translation to substitutions, equalities, and theories by:

JθKED(X) ≡ λ(D ∩ p(X)).Jθ(X)KE

Jr = sKD ≡ JrKD = JsKD

JTK = {Jr = sKD | r = s ∈ T}

In the translation of T, D is atoms(r) ∪ atoms(s) in the order
chosen in Definition 34.

Lemma 36. id · g ≡ g, and π · (π′ · g) ≡ (π ◦ π′) · g

Lemma 37. (λa.g)a =αβ g.
b 6∈ fa(g) implies (λa.g)b =αβ (a b) · g.
If nontriv(π) ∩ fa(g) ⊆ D then (λD.g)π ·D =αβ π · g.

Proof. The first two parts can be proved by inductions on a measure
of the size of g.

For the third part, we work by induction on the length of D.
If D has one element we use the first part. Suppose D has more
than one element. Write π′ = (π(a) a) ◦ π, head(D) = a, and
tail(D) = D′ (head(D) is the first element in D and tail(D)
is the other elements). There are two cases, depending on whether
π(a) = a or π(a) 6= a. We consider only the case π(a) 6= a; the
other is similar.

Note the following facts: π′(a′) = π(a′) for every a′ in D′,
π′(a) = a, nontriv(π′)∩ fa(g) ⊆ D′, and (π(a) a)◦π′ = π. We
reason as follows:

(λD.g)(π ·D) ≡ (λa.λD′.g)π(a)(π′ ·D′) Facts
=αβ (a π(a)) · ((λD′.g)π′·D′) First part, π(a)∈D′
=αβ (a π(a)) · (π′ · g) Ind. hyp.
≡ π · g Lemma 36

Lemma 38. Jπ · rKD ≡ π · JrKD

Proof. By induction on r.

Lemma 39. fa(JrKD) ⊆ fa(r).

Proof. By induction on r. We consider one case.
- The case π · X . We reason as follows, where [d1, . . . , dn] =
D ∩ p(X):

fa(Jπ ·XKD) = fa(Xπ(d1) . . . π(dn)) Definition 35
= fa(π(d1)) ∪ . . . ∪ fa(π(dn)) Definition 24
= π · (fa(d1) ∪ . . . ∪ fa(dn)) Fact
⊆ π · fa(X) Definition 9
= fa(π ·X) Definition 9

Theorem 40. If atoms(r) ⊆ D then JrθKE =αβ JrKDJθKED .

Proof. By induction on r.

- The case π ·X . JθKED(X) = λ(D ∩ p(X)).Jθ(X)KE by Def-
inition 35. Then:

J(π·X)θKE ≡ Jπ · θ(X)KE Definition 10
≡ π · Jθ(X)KE Lemma 38

=αβ (λ(D∩p(X)).Jθ(X)KE)(π·(D∩p(X))) Lemma 37
≡ (X(π · (D ∩ p(X))))JθKED Definition 35
≡ Jπ ·XKDJθKED Definition 35

The use of Lemma 37 above is valid, since by assumption
nontriv(π) ⊆ D, and so nontriv(π) ∩ fa(θ(X)) ⊆ D. The
result follows.

- The case [a]r. Choose b fresh, so b 6∈ fa(JrθKD), b 6∈S
X∈fV (JrKD) fa(JθKED(X)), and b 6∈ fa(JrK)D . Then:

J([a]r)θKE ≡ J[a](rθ)KE Definition 10
≡ λa.(JrθKE) Definition 35

=α λb.(b a) · JrθKE Lemma 39, b fresh
=αβ λb.(b a) · (JrKDJθKED) Inductive hypothesis
≡ (λb.(b a) · JrKD)JθKED b fresh

=α (λa.JrKD)JθKED Lemma 39, b fresh
≡ (J[a]rKD)JθKED Definition 35

The result follows.

Example 41. Suppose a, a′ ∈ comb and b 6∈ comb. Consider
r ≡ [b](b a) · X where p(X) = comb. Note that atoms(r) =
{a, b}. Take D = [a, b] and E = [a, a′, b]. It is a fact that
JrKD ≡ λb.(Xb).

Take θ = id . Then JθKED(X) ≡ λa.(Xaa′), and

JrKDJθKED ≡ (λb.(Xb))[X:=λa.(Xaa′)]
≡ λb.((λa.(Xaa′))b)

=αβ λb.(Xba
′)

JrKE ≡ λb.(Xba′)

Take θ = [X:=a]. Then JθKED(X) ≡ λa.a, and

JrKDJθKED ≡ (λb.(Xb))[X:=λa.a]
≡ λb.((λa.a)b)

=αβ λb.b

JrθKE ≡ J[b]bKE ≡ λb.b

Finally, take θ = [X:=a′]. Then JθKED(X) ≡ λa.a′, and

JrKDJθKED ≡ (λb.(Xb))[X:=λa.a′]
≡ λb.((λa.a′)b)

=αβ λb.a
′

JrθKE ≡ J[b]a′KE ≡ λb.a′

Now take D = [] and E = [a, a′, b], so that the condition of
Theorem 40 fails. It is a fact that JrKD ≡ λb.X . Take θ = id .
Then JθKED(X) = Xaa′ and

JrKDJθKED ≡ ((λb.X)[X:=Xaa′]
≡ λb.(Xaa′)

JrKE ≡ λb.(Xba′)

3.2 Soundness of the translation
In Theorem 43 we show that derivable equality is preserved by
the translation, provided that the indexing vector is ‘large enough’.
We also verify that the axioms in ULAME translate to valid αβη-
equivalences between λ-terms (Theorem 45).

Lemma 42. If Π is a derivation of T ` r = s and T ⊆ T′ then
there exists a derivation Π′ of T′ ` r = s, and atoms(Π) =
atoms(Π′).

Similarly, if Λ is a derivation of L ` g = h and L ⊆ L′ then
there exists a derivation Λ′ of L′ ` g = h, and atoms(Λ) =
atoms(Λ′).

Proof. Since a derivation that mentions only axioms in T (or L) is
also one that mentions only axioms in T′ (or L′).

Theorem 43. Suppose Π is a derivation of T ` r = s. Suppose
atoms(Π) ⊆ E. Then there is a derivation JΠKE of JTK ` JrKE =
JsKE .

Proof. By induction on Π.
- (Nref), (Ntran), (Napp), and (Nλ) translate to (Lref),

(Ltran), (Lapp), and (Lλ) respectively.
- The case (Nα). Suppose a, b 6∈ fa(r). Then a, b 6∈ fa(JrKE)

by Lemma 39. By (Lα), g =α (a b) · g. We use Lemma 42.
- The case (Naxπ,θr=s) for (r = s) ∈ T.

Let D be the vector of atoms containing atoms(r) ∪ atoms(s)
chosen in Definition 35.
We need to show that JTK ` Jπ · (rθ)KE = Jπ · (sθ)KE . First,
we note the following:

Jπ · (rθ)KE ≡ π · JrθKE Lemma 38
=αβ (λE.JrθKE)π · E Lemma 37
=αβ (λE.(JrKDJθKED))π · E Theorem 40

The use of Lemma 37 is valid since nontriv(π) ⊆ E by
assumption. The use of Theorem 40 is valid since atoms(r) ⊆
D by assumption.
By the same reasoning for s we note that

Jπ · (sθ)KE =αβ (λE.(JsKDJθKED))π · E.

We use Lemma 42 and (Lax
JθKED
Jr=sKD).

Example 44. Suppose p(X) = comb and suppose a, a′ ∈ comb
and b 6∈ comb. Consider term-formers A and E.

Consider a theory F with one axiom E[a]A[b]X = E[a]X . Then
JFK = {Eλa.Aλb.(Xa) = Eλa.(Xa)}.

There is a trivial derivation of F ` E[a]A[b]X = E[a]X .
Take E = [a′, a, b]. It is not hard to construct a derivation of
JFK ` Eλa.Aλb.(Xa′a) = Eλa.(Xa′a), by instantiating X to
Xa′ in JFK.

Theorem 45. Suppose (r = s) ∈ ULAME. For every π and θ,
Jπ · (rθ)KD =αβη Jπ · (sθ)KD .

Proof. We consider just two axioms of ULAME:
- Axiom (Nβvar). Since (λa.a)g =αβη g and (λb.b)g =αβη g

always, by (Lβvar).
- Axiom (Nβ#). The unknown X ′ in (Nβ#) has permission

set comb \{a}. By Definition 10 a 6∈ fa(θ(X ′)). By Lemma 39
also a 6∈ fa(Jθ(X ′)KD). The result follows using (Lβ#).

4. Translating back
In Section 3 we translated nominal algebra theories to λ-theories.
Now, we translate λ-theories to nominal algebra theories. As al-
ready discussed our translation identifies λ-abstraction with nom-
inal atoms abstraction. Accordingly, it generates nominal algebra
theories that include ULAME (Definition 14).

4.1 The translation L-MD , and soundness
We define the inverse translation in Definition 47, then prove a
compositionality result (Lemma 49). This resembles Theorem 40
but it is technically simpler, and holds for all vectors E. Our
λ-terms have no capturing substitution, so this makes sense; the

vector in L-MD is just there to obtain inverse properties with respect
to J-KD , as we shall see later in Subsections 4.3 and 4.4.

We prove a soundness result for the translation (Theorem 51).
This resembles Theorem 43 but again, it is valid for all vectors.

Definition 46. Suppose D = [d1, . . . , dn]. Continuing Defini-
tion 32 write [D]r as shorthand for [d1] . . . [dn]r (a list of atoms-
abstractions).

Definition 47. If g is a λ-term and D is a vector of atoms, define a
nominal term LgMD by:

LaMD ≡ a LfMD ≡ f LXMD ≡ [D ∩ p(X)]X

Lλa.gMD ≡ [a](LgMD) Lg′gMD ≡ Lg′MDLgMD

Call σ good when fa(σ(X)) ⊆ p(X) for all X . Extend the trans-
lation to good substitutions, equalities, and theories by:

LσMED(X) ≡ Lσ(X)ME(D ∩ p(X)) (σ good)
Lg = hMD ≡ (LgMD = LhMD)

LLM = {Lg = hMD | g = h ∈ T} ∪ ULAME

We take LσMED to be undefined if σ is not good. The condition
fa(σ(X)) ⊆ p(X) is sufficient to ensure that fa(LσMED) ⊆ p(X)
always, so that LσMED is a substitution when it is defined (Defini-
tion 10). This condition is ‘soft’ in a sense discussed in Subsec-
tion 4.2.

In the definition of LLM,D is atoms(g)∪atoms(h) in the order
chosen in Definition 34.

Note that LLM is the translation of the axioms in L, plus ULAME;
intuitively, ULAME represents the rules (Lβvar), (Lβ#), (Lβid),
(Lβλ), (Lβapp), and (Lη).

Lemma 48. fa(LgMD) ⊆ fa(g).

Proof. By induction on g.

Lemma 49. Suppose fa(σ(X)) ∩D = [] for every X ∈ fV (g)
and suppose σ is good. Then ULAME ` LgσMED = LgMDLσMED .

Proof. By induction on g. We consider one case:
- The case of X . Write S = p(X). We reason as follows:

ULAME ` LXMDLσMED ≡ ([D ∩ S]X)LσMED Definition 47
≡ [D ∩ S]LσMED(X) Definition 11
≡ [D ∩ S](Lσ(X)ME(D ∩ S)) Definition 47
= Lσ(X)ME (Nη)

The final step is valid, since fa(σ(X)) ∩D = ∅ by assumption
and therefore by Lemma 48 also Lσ(X)ME ∩ (D ∩S) = ∅.

Definition 50. Call a derivation Λ good when σ is good for every
(axσg=h) in Λ.

Theorem 51. Suppose Λ is a good derivation of L ` g = h. Then
for any E there is a derivation LΛME of LLM ` LgME = LhME .

Proof. We work by induction on Λ:
- (Lrefl), (Ltran), (Lapp), and (Lλ) translate to (Nrefl),

(Ntran), (Napp), and (Nabs) respectively.
- The case (Laxσg=h). We want that LLM ` LgσME = LhσME .

By Lemma 49 LLM ` LgσME = LgM[]LσME[] and LLM ` LhσME =

LhM[]LσME[] (here [] is the empty list of atoms). Also by (Nax
id,LσME[]
Lg=hM[]

)

we have LLM ` id · (LgMELσME[]) = id · (LhM[]LσME[]). The result
follows using (Ltran) and Lemma 36.

- The case (Lβ#). There are two cases:

- L ` (λa.h)g = h where a 6∈ fa(h), and a is the atom we
chose to use in the axiom (Nβ#) of ULAME (Definition 14).

- L ` (λa′.h)g = h where a′ 6∈ fa(h), and a′ is different from
the atom a we chose to use in axiom (Nβ#).

We consider only the second case; the first case is similar.
Let π be any permutation such that π(a′) = a and such that
π · (fa(h) ∪ fa(g)) ⊆ comb (that is, π maps a′ to a and maps
the atoms in fa(h) to be inside comb, and the atoms in fa(g) to
be inside comb).
Let θ be the substitution mapping X ′ to π-1 · (LhME) and X to
π-1 · (LgME) and every other Y to id · Y .
We consider (Naxπ,θ([a]X′)X=X′), where (([a]X ′)X = X ′) =

(Nβ#). We verify that this gives the right result:
By Lemmas 20 and 48 fa(π·(LhME)) ⊆ comb\{a} and fa(π ·
(LgME)) ⊆ comb. Therefore, θ is a substitution (Definition 10).
Also:

π · ((([a]X ′)X)θ) ≡ π · ([a]π-1·(LhME))(π-1·(LgME)) Definition 11
≡ ([a′](LhME))(LgME) Def. 8, Lem. 36
≡ L([a′]h)gME Definition 47

Similarly, π · (X ′θ) ≡ LhME as required.
- The case of (Lη) is similar (we translate to an instance of (Nax)

for (Nη), and use Lemma 48).
- (Lβvar), (Lβλ), (Lβapp) translate to instances of (Nax) for

(Nβvar), (Nβλ), and (Nβapp) respectively.

Example 52. Suppose p(X) = comb and suppose a, a′ ∈ comb
and b 6∈ comb. Consider term-formers A and E.

Consider a theory G with one axiom Eλa.Aλb.(Xa) = Eλa.(Xa).
Then LGM = {E[a]A[b](([a]X)a) = E[a](([a]X)a)}.

There is a trivial derivation of G ` Eλa.Aλb.(Xa) = Eλa.(Xa).
Take E = []. It is not hard to construct a derivation of LGM `
E[a]A[b](Xa) = E[a](Xa), by instantiating X to Xa in LGM and
using (Nβid).

4.2 Making derivations good
Theorem 51 uses a condition that Λ is ‘good’ (Definition 50). But
what if we are given a Λ that is not? Lemmas 53 and 55 give senses
in which we need not worry about this.

Lemma 53. Suppose Π is a derivation of T ` r = s. Suppose
atoms(Π) ⊆ E. Then JΠKE from Theorem 43 is a good derivation
of JTKE ` JrKE = JsKE .

Proof. Examining the construction of JΠKE in the proof of Theo-
rem 43, it suffices to check that JθKED is good for every θ in Π. Ex-
panding definitions, we must check that fa(λD∩p(X).Jθ(X)KE) ⊆
p(X) always. This is by Lemma 39 (with r ≡ id ·X).

Definition 54. Call a bijection on unknowns a renaming. ρ will
range over renamings.

Each ρ is also a substitution (Definition 25). Write gρ for ρ
acting on g as a substitution. Write Lρ for the set {gρ = hρ |
(g = h) ∈ L}. Write (ρ-1Λ) for the tree obtained by mapping
every (axσg=h) to (axρ

-1◦σ
gρ=hρ).

It is a fact that if Λ is a derivation of L ` g = h then (ρ-1Λ) is
a derivation of Lρ ` g = h.

Lemma 55. Suppose Λ is a derivation of L ` g = h. Then there
exists a ρ such that (ρ-1Λ) is a good derivation of Lρ ` g = h.

Proof. Let A be the set of all atoms mentioned in Λ. It suffices to
choose ρ such that for each X mentioned in Λ, A ⊆ p(ρ(X)).

4.3 The translations J-K and L-M are inverse on theories
Our main result is Theorem 62. This matches λ-theories with theo-
ries in nominal algebra that include ULAME.

Right from [32] the intuition of nominal terms and nominal
algebra has been that this is a weaker syntax and logic than λ-terms
and λ-theories; something that drops β(η)–equivalence, but retains
just enough power to express binding. Theorem 62 is a way to make
this intuition formal, by identifying arbitrary theories over λ-terms
with nominal algebra theories over ULAME.

Lemma 56. ULAME ` ([a]r)a = r.
b 6∈ fa(r) implies ULAME ` ([a]r)b = (a b) · r.
If nontriv(π) ∩ fa(r) ⊆ D then ULAME ` ([D]r)(π ·D) =

π · r.

Proof. For the first two parts, we reason as follows:

ULAME ` ([a]r)a = r (Nβid)

ULAME ` ([a]r)b = ([b](a b) · r)b (Nα), a, b 6∈ fa([a]r)
= (a b) · r (Nβid)

The proof of the third part is like the proof of the third part of
Lemma 37.

Lemma 57. If atoms(r)⊆D then ULAME ` LJrKDMD = r. As a
corollary, if atoms(r)⊆D and ULAME⊆T then T ` LJrKDMD = r.

Proof. The corollary follows by Lemma 42. We prove the first part
by induction on r:
- The case π ·X . Write S = p(X). We reason as follows:

ULAME ` LJπ ·XKDMD ≡ LX(π · (D ∩ S))MD Definition 35
≡ ([D ∩ S]X)(π · (D ∩ S)) Definition 47
= π ·X Lemma 56

The use of Lemma 56 here is valid since nontriv(π) ⊆ D by
assumption and S ⊆ D, and it follows by Definition 9 that
nontriv(π) ∩ fa(X) ⊆ D ∩ S.

Lemma 58. JLgMDKD =η g.
As a corollary, L ` JLgMDKD = g always.

Proof. The corollary follows by Lemma 42. We prove the first part
by induction on g. We consider one case:
- The case X . Write S = p(X). We reason as follows:

JLXMDKD ≡ J[D ∩ S]XKD Definition 47
≡ λ(D ∩ S).(X(D ∩ S)) Definition 35

=η X (Lη)

Definition 59. Suppose T and T′ are two theories. Write T a` T′

when for all g and h, T ` g = h if and only if T′ ` g = h.
Similarly for L and L′.

Lemma 60. T a` T′ if and only if T ` g′ = h′ for every
(g′ = h′) ∈ T′ and also T′ ` g = h for every (g = h) ∈ T.

Similarly for L and L′.

Proof. The left-to-right implication is immediate. The right-to-left
implication is by a routine induction on derivations.

Lemma 61. We observe the following set inclusions:

atoms(r) ⊆ atoms(JrKD) ⊆ atoms(r) ∪D
atoms(g) ⊆ atoms(LgMD) ⊆ atoms(g) ∪D

Proof. By routine inductions on r and g.

Theorem 62. If ULAME ⊆ T then LJTKM a` T.
JLLMK a` L always.

Proof. We use Lemma 60.
Suppose (r = s) ∈ T. Let D be the vector of atoms cho-

sen for atoms(r) ∪ atoms(s) in Definition 34. By Lemma 61
atoms(JrKD)∪atoms(JsKD) = atoms(D). Therefore, LJrKDMD =
LJsKDMD ∈ LJTKM. By assumption atoms(r) ⊆ D and atoms(s) ⊆
D. The result follows by (Ntran) and by Lemma 57.

Conversely, suppose (r = s) ∈ LJTKM. From Definition 47 and
Lemma 61 there are two cases:
- (r = s) ∈ ULAME.
- (r = s) = (LJr′KDMD = LJs′KDMD) for some (r′ = s′) ∈ T.

We use Lemma 57 as before.
Suppose (g = h) ∈ L. Let D be the vector of atoms cho-

sen for atoms(g) ∪ atoms(h) in Definition 34. By Lemma 61
atoms(LgMD)∪atoms(LhMD) = atoms(D). Therefore, (JLgMDKD =
JLhMDKD) ∈ JLLMK. We use (Ltran) and Lemma 58.

Suppose (g = h) ∈ JLLMK. There are two possibilities:
- (g = h) = (JrKD = JsKD) for some (r = s) ∈ ULAME.

By Theorem 45 and Lemma 42, L ` g = h.
- (g = h) = (JLg′MDKD = JLh′MDKD) for some (g′ = h′) ∈ L.

We use Lemma 58 as before.

4.4 The translations J-KD and L-MD are inverse on
derivations, if D is sufficiently large

We now come to our main result; Theorem 67. Intuitively we can
read this as follows: we can translate between nominal algebra the-
ories (with ULAME) and λ-theories. In both directions the transla-
tion uses a finite vector of atoms E. For derivability of equality to
be preserved in both directions, this vector must be ‘large enough’.

Thus, there is no fixed 1-1 correspondence between nominal
terms and λ-terms, but we can translate between theories (Subsec-
tion 4.3) and for any given derivation of an equality, if we take a
large enough indexing vector, then we can also translate that deriva-
tion accurately between the two theories. There may always be an-
other derivation of a different equality, or even of the same equality,
that requires a different (possibly longer, possibly shorter) vector.

Note that we have not attempted to exhibit a ‘minimal’ vector
such that the translation works; this is future work. Perhaps the no-
tion of the capturable atoms of a nominal term may be relevant
here; it was used to measure the minimal raising required to trans-
late between nominal and higher-order unification [7].

Lemma 63. If Π is a derivation of T ` r = s then there exists
a derivation Πθ of T ` rθ = sθ. Furthermore, atoms(Π) ⊆
atoms(Πθ) ⊆ atoms(Π) ∪

S
{fa(θ(X)) | X occurs in Π}.

Proof. We apply θ to every term in Π to obtain Πθ and verify by
induction that Πθ is a derivation of T ` rθ = sθ.

Corollary 64. Suppose Π is a derivation of T ` LgMD = LhMD .
Suppose atoms(ULAME)⊆D⊆E. Then there is a derivation Π′ of
T ` LgME = LhME , and atoms(Π)⊆atoms(Π′)⊆atoms(Π)∪E.

Proof. By Lemma 63 ΠLidMED is a derivation of T ` LgMDLidMED =
LhMDLidMED , and atoms(Π) ⊆ atoms(ΠLidMED) ⊆ atoms(Π)∪D.
By Lemma 49 T ` LgMDLidMED = LgME and we see from the proof
of Lemma 49 that the atoms in the derivation are in atoms(g) ∪
E ⊆ atoms(Π) ∪ E. Similarly for h. We use (Ltran).

Theorem 65. Suppose ULAME ⊆ T.
- Suppose Π is a derivation of T ` r = s. Then JΠKE is a deriva-

tion of JTK ` JrKE = JsKE for anyE such that atoms(Π) ⊆ E.
- Suppose JTK ` JrKE = JsKE and atoms(r) ∪ atoms(s) ⊆ E.

Then T ` r = s.
- Suppose Λ is a derivation of L ` g = h. There exists a renaming
ρ (Definition 54) such that for any E, LLρM ` LgME = LhME .

- Suppose LLρM ` LgME = LhME for some ρ and some E. Then
L ` g = h.

Proof. - This is Theorem 43.
- Suppose JTK ` JrKE = JsKE where atoms(r)∪atoms(s) ⊆ E.

By Lemma 53 and Theorem 51 LJTKM ` LJrKEME = LJsKEME .
By Theorem 62 LJTKM a` T. By Lemma 57 since ULAME ⊆ T
and atoms(r) ⊆ E, T ` LJrKEME = r, and similarly for s. It
follows by (Ltran) that T ` r = s as required.

- By Lemma 55 there exists a ρ such that (ρ-1Λ) is a good deriva-
tion of Lρ ` g = h. The result follows by Theorem 51.

- Suppose Π is a derivation of LLρM ` LgME = LhME . Choose
any E′ such that E ∪ atoms(Π) ∪ atoms(ULAME) ⊆ E′. By
Corollary 64 there is a derivation Π′ of LLρM ` LgME

′
= LhME

′

and atoms(Π′) ⊆ E′. By Theorem 43 JLLρMK ` JLgME
′
KE

′
=

JLhME
′
KE

′
. By Theorem 62 JLLρMK a` Lρ. By Lemma 58,

Lρ ` JLgME
′
KE

′
= g, and similarly for h. It follows by (Ltran)

that Lρ ` g = h. Since ρ is invertible, we can use Lemma 55 to
verify that L ` g = h as required.

Definition 66. Suppose Φ(D) is some assertion (in English) which
depends on a vector D. Write “Φ(D) holds for sufficiently large
D” to mean “there exists a D such that for all D′, if D ⊆ D′

(Definition 31) then Φ(D′)”.

Theorem 67. Suppose ULAME ⊆ T. Then:
- T ` r = s if and only if JTK ` JrKE = JsKE for sufficiently

large E.
- For any E, L ` g = h if and only if there exists a ρ such that

LLρM ` LgME = LhME .

Proof. Direct from Theorem 65.

A stronger version of part 2 of Theorem 67 holds, where we
echo part 1 and write “for sufficiently permissive ρ”, meaning for
“ρ such that p(X) is sufficiently large for relevantX” (generalising
Definition 66 to sets). Making this formal is for a longer paper.

5. Conclusions
Equational reasoning is simple, yet powerful. In this arena we have
addressed the question “what is the connection between truth and
derivability over nominal syntax, and truth and derivability over
higher-order syntax”.

No single translation offers itself — but for any given deriva-
tion we can find a sufficiently large indexing set to translate it be-
tween the two worlds. This makes sense, because nominal terms
unknowns X intuitively represent ‘any term, with a capturing sub-
stitution’, and a term may mention finite but unboundedly many
atoms. The translation also brings out some nice features of using
(permissive) nominal terms syntax, compared to λ-terms syntax:

• Nominal terms are more elementary, in the sense that the prim-
itive theory of equality over nominal terms (no axioms) has
fewer axioms than the primitive theory of equality over λ-terms
(which the results in this paper identify in a certain precise
sense with the axioms of ULAME). In other words: to reason
in permissive nominal algebra we do not need to include the
behaviour captured by the axioms in ULAME if we do not want
it, whereas to reason using λ-terms, we must include that be-
haviour whether we want it or not (perhaps minus (Lη)).6

6 This point also motivates higher-order patterns [27]. See [23, 7, 6] for the
connection with nominal terms.

• By design, nominal terms have a two-level variable structure
which directly models the behaviour of the informal meta-level
of mathematical discourse with its ‘object-level variables’ and
‘meta-level variables’ (see the example statements about first-
order logic and λ-calculus in the Introduction). As we move
under abstractions, it is not necessary to maintain a list of names
for which we wish to permit capture; this list appears in this
paper as the D ∩ p(X) in Definitions 35 and 47.

It is possible that logics based on nominal terms, of which permis-
sive nominal algebra is one example, might offer convenient rea-
soning frameworks for formalising informal reasoning about logic
and computation. It is a natural next step to study reasoning using
nominal terms in more detail, and this includes considering log-
ics with richer judgement-forms. We hope the techniques used here
will be prototypical for such logics.

Choice of permissive nominal terms over nominal terms The
nominal algebra presented in this paper is not identical to that
presented in [14, 26]. We use a ‘permissive’ variant which we find
simpler to define and manipulate. The connection with ‘standard’
nominal algebra will formally be developed in a later paper. We
will, however, sketch why we prefer to use permissive nominal
terms; for definitions and notation for nominal terms, see [32].

Nominal terms have no permissions sets. Instead there is a
freshness context, usually written ∆. ∆ is a finite set of assertions
a#X; these correspond in the notation of this paper with a 6∈
p(X) (“a is not in the permissions set of X”). Thus the translation
of Definition 35 would be indexed by ∆, so we might write it as
JrKD∆ .

The difference is that we may need to change ∆, and there is no
natural notion of fa(r). Often, we must obtain fresh atoms; see for
example the case [a]r in Theorem 40. Using permissive nominal
terms such fresh atoms are readily available by Lemma 18. In the
theory of nominal terms this is not the case; for example ∆ may
be empty and so provide no fresh atoms at all. Therefore, we would
have to extend ∆ to a ‘freshly extended’ freshness context ∆′ ⊇ ∆.
It might be useful to sketch what Theorem 40 would become:

Suppose atoms(r) ⊆ D. Then for any ∆, there exists some
freshly extended ∆′ ⊇ ∆ such that JrθKE∆′ =αβ JrKD∆′JθK∆′

E
D .

There is nothing mathematically wrong with this, but it is more
complex and this complexity propagates. Uses of the result may in-
volve reasoning on and possible extension of the freshness context;
this lengthens proofs, propagates to the statements of following re-
sults, and it introduces a non-trivial notion of state into our reason-
ing in the sense that the freshness contexts may get larger at each
reasoning step.

The use of permissive nominal syntax avoids this and so gives
us shorter and sweeter proofs.

Future work The algebras considered in this paper are unsorted
and untyped. λ-terms are routinely given types; we could do the
same for nominal terms. A ‘function type’ α → β would just
indicate a term binding of a variable of type α in a term of type
β — but using axioms like those in ULAME we could also endow
this with functional behaviour if we wished.

The encoding of λ-theories into nominal algebra theories sug-
gests we might be able to apply nominal algebra theorems to study
existing work on logic and computation phrased in universal al-
gebra. We have particularly in mind Salibra’s study of λ-theories.
Nominal algebra satisfies some stronger properties than univeral
algebra, notably a strong version of the HSP theorem [11] which
factors also over atoms-abstraction. It may be possible to put
some constructions of Salibra, which he carries out specifically for
Lambda-Abstraction Algebras, into a nominal algebraic setting.

As discussed in Subsection 2.2, the proofs in this paper require
η-equivalence. [16, 18] consider a non-extensional theory ULAM

(it lacks (Nη)). It is future work to see whether the proof-methods
here can be adjusted to work without it. An overview of some
denotations for logic over non-extensional λ-terms is [3].

It should be possible to use the translation of λ-theories into
nominal algebra, to construct denotations for them in nominal sets
or variants of nominal sets. Conversely, if a nominal algebra theory
contains ULAME then it should be possible to give it a denotation
in functions (probably a rather large one, involving all possible
indexes over vectors of atoms).

It would be interesting to find a translation which is sound
and complete for atoms-abstraction without ULAME: that is, can
we interpret nominal atoms-abstraction in λ-syntax such that the
image of the translation does not satisfy β-equivalence? It might
then be possible to give denotations based on functions (as well as
those based on nominal sets [17]) to nominal terms and (arbitrary)
nominal algebra theories.

References
[1] Beatrice Amrhein. Birkhoff’s HSP-theorem for cumulative

logic programs. Lecture Notes in Computer Science, 798:24–
36, 1994.

[2] Peter B. Andrews. An introduction to mathematical logic and
type theory: to truth through proof. Academic Press, 1986.

[3] Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase.
Higher-order semantics and extensionality. Journal of Sym-
bolic Logic, 69:1027–1088, 2004.

[4] S. Burris and H. Sankappanavar. A Course in Universal Alge-
bra. Graduate texts in mathematics. Springer, 1981.

[5] James Cheney. Relating nominal and higher-order pattern
unification. In Proceedings of the 19th International Workshop
on Unification (UNIF 2005), pages 104–119, 2005.

[6] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan.
Permissive Nominal Terms and their Unification. Technical
Report HW-MACS-TR-0062, Heriot-Watt University, 2009.
Available online at gabbay.org.uk/papers/perntu-tr.pdf.

[7] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan.
Permissive Nominal Terms and their Unification. In CILC,
24th Italian Conference on Computational Logic, 2009.

[8] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-
order unification via explicit substitutions. Information and
Computation, 157, 2000.

[9] Maribel Fernández and Murdoch J. Gabbay. Nominal
rewriting (journal version). Information and Computation,
205(6):917–965, 2007.

[10] Murdoch J. Gabbay. A Theory of Inductive Definitions with
alpha-Equivalence. PhD thesis, Cambridge, UK, 2000.

[11] Murdoch J. Gabbay. Nominal Algebra and the HSP Theorem.
Journal of Logic and Computation, 19(2):341–367, 2009.

[12] Murdoch J. Gabbay and Aad Mathijssen. Nominal Algebra.
In 18th Nordic Workshop on Programming Theory, 2006.

[13] Murdoch J. Gabbay and Aad Mathijssen. Nominal Algebra.
Technical Report HW-MACS-TR-0045, Heriott-Watt, 2006.

[14] Murdoch J. Gabbay and Aad Mathijssen. A Formal Calculus
for Informal Equality with Binding. In WoLLIC’07: 14th
Workshop on Logic, Language, Information and Computation,
volume 4576 of Lecture Notes in Computer Science, pages
162–176, 2007.

[15] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-
order Logic. Journal of Logic and Computation, 18(4):521–
562, August 2008.

[16] Murdoch J. Gabbay and Aad Mathijssen. Reasoning in simple
type theory: Festschrift in Honour of Peter B. Andrews on his
70th Birthday, chapter The lambda-calculus is nominal alge-
braic. Studies in Logic and the Foundations of Mathematics.
IFCoLog, December 2008.

[17] Murdoch J. Gabbay and Aad Mathijssen. Nominal Algebra.
Journal of Logic and Computation, 2009. In press.

[18] Murdoch J. Gabbay and Aad Mathijssen. A nominal axioma-
tisation of the lambda-calculus. Journal of Logic and Compu-
tation, 2009. In press.

[19] Murdoch J. Gabbay and A. M. Pitts. A New Approach to
Abstract Syntax with Variable Binding. Formal Aspects of
Computing, 13(3–5):341–363, 2001.

[20] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav
Usenko, and Muck van Weerdenburg. The formal specification
language mCRL2. In Methods for Modelling Software Systems
(MMOSS), number 06351 in Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), 2007.

[21] Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg,
and Yaroslav S. Usenko. From µCRL to mCRL2: motivation
and outline. In Proc. Workshop Algebraic Process Calculi: The
First Twenty Five Years and Beyond, BRICS NS-05-3, pages
126–131, 2005.

[22] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric
Algebras. North Holland, 1971 and 1985. Parts I and II.

[23] Jordi Levy and Mateu Villaret. Nominal unification from a
higher-order perspective. In Proceedings of RTA’08, volume
5117 of Lecture Notes in Computer Science. Springer, 2008.

[24] Stefania Lusin and Antonino Salibra. The lattice of lambda
theories. Journal of Logic and Computation, 14(3):373–394,
2004.

[25] Giulio Manzonetto and Antonino Salibra. Applying universal
algebra to lambda calculus. Journal of Logic and computation,
2009. Online first.

[26] Aad Mathijssen. Logical Calculi for Reasoning with Binding.
PhD thesis, Technische Universiteit Eindhoven, 2007.

[27] Dale Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification. Journal
of Logic and Computation, 1(4):497 – 536, 1991.

[28] Dale Miller. Unification under a mixed prefix. Journal of
Symbolic Computation, 14(4):321–358, 1992.

[29] Donald Monk. On the representation theory for cylindric
algebras. Pacific Journal of Mathematics, 11(4):1447–1457,
1961.

[30] Antonino Salibra. On the algebraic models of lambda calcu-
lus. Theoretical Computer Science, 249(1):197–240, 2000.

[31] Li-Yang Tan. Formalizing the meta-theory ofQ0 in the calcu-
lus of inductive constructions. PhD thesis, Henry Edwin Sever
Graduate School of Washington University, 2006.

[32] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay.
Nominal Unification. Theoretical Computer Science, 323(1–
3):473–497, 2004.

http://www.gabbay.org.uk/papers/perntu-tr.pdf
http://www.gabbay.org.uk/papers/perntu-tr.pdf
http://www.gabbay.org.uk/papers/perntu.pdf
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#nomahs
http://www.gabbay.org.uk/papers.html#noma-nwpt
http://www.gabbay.org.uk/papers.html#noma-tr
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#lamcna
http://www.gabbay.org.uk/papers.html#noma-jv
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#nomu-jv

	Introduction
	Algebra-with-binding: nominal algebra and -theories
	Permissive nominal algebra
	-theories

	Translating nominal terms into the -calculus
	The translation "464A671 - "564B679 D, and its compositionality
	Soundness of the translation

	Translating back
	The translation - D, and soundness
	Making derivations good
	The translations "464A671 - "564B679 and - are inverse on theories
	The translations "464A671 - "564B679 D and - D are inverse on derivations, if D is sufficiently large

	Conclusions

