
One-and-a-halfth order terms: Curry-Howard
and incomplete derivations

Murdoch J. Gabbay1 and Dominic P. Mulligan2

1 http://www.gabbay.org.uk
2 http://www.macs.hw.ac.uk/~dpm8/

Abstract. The Curry-Howard correspondence connects Natural Deduc-
tion derivation with the lambda-calculus. Predicates are types, deriva-
tions are terms. This supports reasoning from assumptions to conclu-
sions, but we may want to reason ‘backwards’ from the desired conclu-
sion towards the assumptions. At intermediate stages we may have an
‘incomplete derivation’, with ‘holes’.
This is natural in informal practice; the challenge is to formalise it. To
this end we use a one-and-a-halfth order technique based on nominal
terms, with two levels of variable. Predicates are types, derivations are
terms — and the two levels of variable are respectively the assumptions
and the ‘holes’ of an incomplete derivation.

1 Introduction

The Curry-Howard correspondence [US06,PCW05] connects logic with typed λ-
calculus: predicates are types; derivations are terms; discharge is λ-abstraction;
modus ponens is application; β-reduction is proof-normalisation. For example,3

[A]a A⇒B

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

corresponds with λa.((pa)qa) (1)

where a has type A, p has type A⇒ B⇒ C, and q has type A⇒ B.
The λ-calculus supports ‘forwards’ reasoning, where we plug together com-

plete derivations to form larger ones. However, we may wish to reason ‘back-
wards’: We start from an incomplete derivation of the desired conclusion and we
work backwards to construct a derivation. Then we may have ‘half a derivation’,
like as below left with a ‘hole’ called X:

··· X
B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

[A]a
··· X

A⇒ B

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

[A]a
··· X

A⇒ B

B

[A]a A⇒B⇒C

B⇒C

C
a

A⇒C

3 We are grateful to Jojgov for the examples in his paper [Joj02]. We thank Iman
Poernomo and two anonymous referees for helpful comments.

http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8/

Here, λ-calculus syntax is less helpful. X corresponds with qa in the complete
derivation, so (being straighforward about it) the incomplete derivation corre-
sponds with ‘λa.((pa)X)’. But X is under a λ-binder and should be instanti-
ated ; substituted for without avoiding capture. This is impossible within the
λ-calculus. Most interesting logics are undecidable so theorem-proving is often
interactive (like AUTOMATH [dB80] and its many descendents). This leads us
to study calculi tailored to represent incomplete derivations.

In this paper we build on previous work by the first author and others on
nominal techniques [GP01] and specifically nominal terms [UPG04] and one-and-
a-halfth order logic [GM07]. These were designed specifically to study binding
(in unification up to α-equivalence, and derivation-schema in first-order logic
respectively). They feature two levels of variables, freshness conditions, and per-
mutations; details are in this paper, and in the work cited above. In this paper
we extend this pallette of ideas to represent binding in incomplete derivations.
We are reasonably ambitious in our choice of logic for which to represent incom-
plete derivations: we will consider first-order predicate logic; this is a significantly
more complex target than propositional logic, and it leads to quite a rich syntax.

In the style of Miller [Mil92], McBride’s OLEG system [McB99], and a col-
lection of λ-calculi by Bognar [Bog02], we can represent X by fa where f is
a ‘normal’ variable, perhaps recording in a context f should be instantiated;
f ` λa.((pa)fa). A problem from our point of view is, for example, that the rep-
resentation of the incomplete derivation above left is identical to that of distinct
incomplete derivations above centre and above right, in which X is refined.

Another approach is to extend the λ-calculus with hereditarily parameterised
meta-variables (hereditarily, since the parameters may themselves have ‘holes’).
This path is taken by Jojgov [Joj02], and for a non-hereditary notion of param-
eters, by Severi and Poll [SP94], and Bloo et al [BKLN02].

Following one-and-a-halfth order logic [GM07] we propose an approach based
on nominal terms [UPG04]. Nominal terms have atoms a, b, c, . . . and unknowns
X,Y, Z, Crucially, substitution of unknowns does not avoid capture by atoms,
and we reason on what unknowns do not depend on, rather than using parame-
ters to record what they might depend on (a#X versus fa; see ‘freshness’ below).
The first author, Urban, Pitts, and Cheney amongst others have argued in favour
this approach [UPG04,FG07,Mat07,Pit02,Che05].4

We further this argument and show that atoms, unknowns and freshness
model assumptions, holes, and discharge in incomplete derivations.

Consider an example; definitions are in the body of the paper:

4 In one-and-a-halfth order logic, unknowns populate predicates, and model predicate
meta-variables in derivation schemas. Here, unknowns are used differently, to model
holes in terms representing derivations. The common ‘one-and-a-halfth order’ idea
— also present, implicitly, in Curry-style types for nominal terms [FG06] — is that
atoms can be variables. This is different from [UPG04] where atoms populate a sort
of atoms and are variable symbols.

(1)
··· X

⊥⇒A
(2)

[⊥]a
··· X

⊥⇒A

(3)

[⊥]a
··· X

′

A
(⇒I)a

⊥⇒A

(4)

[⊥]a
(⊥E)

A
(⇒I)a

⊥⇒A

(1) X:⊥⇒φ ` X:⊥⇒φ
(2) X:⊥⇒φ, a:⊥; a#X ` X:⊥⇒φ
(3) a:⊥, X ′:φ ` λa.X ′:⊥⇒φ
(4) a:⊥ ` λa.xf(a):⊥⇒φ

On the left is a refinement of an incomplete derivation of ⊥ ⇒ A to a complete
derivation represented by λa.xf(a). Here xf (for ex-falsum) is a constant repre-
senting ⊥-elimination. On the right is their representation as terms-in-context
in one-and-a-halfth order Curry-Howard. Note that:

−Assumptions are represented by atoms. Types are predicates assumed.
− Incomplete parts of the derivation, or (using terminology from the theorem-
proving community) subgoals, are represented by unknowns. Types are predi-
cates to be proved.
− Freshness conditions a#X, read in the literature as ‘a is fresh for X’ [UPG04]
mean here that ‘a must be discharged in whatever X is instantiated to’.

This paper is ‘just’ about a type system for nominal terms. Has this not
been done before? Not in a way that helps us for constructing Curry-Howard
for first-order logic. A sorting system for nominal terms from [UPG04] is not
suitable; it is designed to construct abstract syntax and atoms have sort ‘the
sort of atoms’. A typing system [FG06] is not suitable; types corresponded to
propositional logic with quantifiers whereas here, we want first-order logic and;
we also want to represent (∀I) and (∀E) (Figure 2) so terms may λ-abstract over
and be applied to type variables and we require freshness for type variables.

Some words on what this paper is not: it is not proof-search [PR05,MS06].
We study binding in incomplete derivations, but not the act of stepping from
one derivation to another. We also give no semantics to our syntax: There is
no denotational semantics (Scott domains spring to mind; we would require an
extended version, perhaps like FM (nominal) domain theory [SP05]). There is
not even an operational semantics (reduction of derivations), though we do plan
this for a later paper; see the Conclusions.

2 Terms, types, and Natural Deduction

2.1 Terms and types

We give definitions, then discuss examples in Remark 10 and Subsection 2.2.
Fix disjoint countably infinite sets of atoms A and unknowns. We let

a, b, c, d, . . . range over atoms. We use a permutative convention; they range
permutatively over atoms, so for example ‘a and b’ means ‘a pair of two distinct
atoms’. Similarly we let X,Y, Z, . . . range permutatively over unknowns.5

Fix atomic type-formers P,Q,R, to each of which is associated an arity
ar(-) which is a nonnegative integer (0, 1, 2, . . .).
5 When we write ‘x’ and ‘y’ we intend them to be distinct symbols; for example ‘λx.y’

is always taken to be different from ‘λx.x’; likewise ‘x = y’ is different syntax than
‘x = x’. This is distinct from the denotation of x being equal to that of y.

Definition 1 Let types be: φ, ψ, ξ ::= ⊥ | φ⇒ φ | P(
ar(P) var’bles︷ ︸︸ ︷
a, . . .) | ∀a.φ.

For example ∀a.(P(a, a)⇒ P(a, b)) is a valid type if ar(P) = 2.
We equate types up to ∀-bound atoms. We write ≡ for syntactic identity of

types. We write φ[a := b] for the usual capture-avoiding substitution action of b
for a. Implication associates to the right; for example φ⇒ ψ ⇒ ξ ≡ φ⇒ (ψ ⇒ ξ).

Intuitively, types are first-order logic with the trivial term-language (a logic
whose terms are just variable symbols).

Definition 2 Define the free atoms of φ as standard by:

fa(P(a, . . .))={a, . . .} fa(φ⇒ψ)=fa(φ)∪fa(ψ) fa(⊥)=∅ fa(∀a.φ) = fa(φ)\{a}

Definition 3 Let terms be: r, s, t, . . . ::= a | X | λa.r | r′r | xf(r).
Following [GL08] we identify terms up to α-equivalence of a in λa.r provided

that r mentions no unknowns.6 We write ≡ for syntactic equivalence of terms.

For example λa.a ≡ λb.b and λa.X 6≡ λb.X. We may write (λa.r)t as r[a 7→ t], for
example (λa.b)a ≡ b[a 7→ a]. We may write r′r as r′(r). Application associates to
the left, so r′′r′r ≡ (r′′r′)r; sometimes we will bracket anyway.

Definition 4 A type assignment is a pair of the form a : φ, or X : φ, or a : ∗.
A typing context Γ is a finite set of type assignments, which is functional in
the sense that:

− If a : φ ∈ Γ then a : ∗ 6∈ Γ . If a : ∗ ∈ Γ then a : φ 6∈ Γ .
− If a : φ ∈ Γ and a : φ′ ∈ Γ then φ = φ′. Similarly for X.

As is standard we may drop set brackets, writing for example Γ, a : φ for Γ ∪ {a : φ}.
We use this convention later without comment. Intuitively, a : φ means ‘a has
type φ’; a : ∗ means ‘a is a type variable’; X : φ means ‘X has type φ’.

Remark 5 We use the same syntactic class (atoms) to represent type variables
and term variables. The typing context differentiates them; a : φ ∈ Γ means a
behaves like a term variable; a : ∗ ∈ Γ means a behaves like a type variable.

We could make a syntactic separation between atoms that can have types
(a : φ ∈ Γ), and atoms that can appear in types (a : ∗ ∈ Γ). However, we would
duplicate the treatments of λ-abstraction, application, and freshness. Our ap-
proach keeps the machinery significantly shorter.

Definition 6 Call a pair a#r of an atom and a term a freshness. Call a fresh-
ness of the form a#X primitive. Call a finite set of primitive freshnesses a
freshness context. ∆ will range over freshness contexts.
6 This allows us to rename bound atoms in ‘normal’ syntax — the part without un-

knowns — but it stops short of a nominal terms style α-equivalence with unknowns
based on permutations. For our purposes in this paper, what we give ourselves is
enough. See the Conclusions.

Definition 7 Call Γ ;∆ ` r a term-in-context. Call Γ ;∆ ` r : φ a typing se-
quent. Call Γ ;∆ ` a#r a freshness sequent.

We may write ‘Γ ;∆ ` r : φ’ for ‘Γ ;∆ ` r : φ is a derivable typing sequent’,
and similarly for Γ ;∆ ` a#r.

Definition 8 − If Φ is a set of types, write fa(Φ) for
⋃
{fa(φ) | φ ∈ Φ}.

− If X is a set of unknowns, write a#X for the freshness context {a#X | X ∈ X}.
−Write b 6∈ ∆ when b#X 6∈ ∆ for all X.

Definition 9 Let the derivable typing and freshness sequents be inductively
defined by the rules in Figure 1. We use the following notation here and later:

− Side-conditions are written in brackets.
−A ranges over typings or freshnesses, so A ∈ {r : φ, a : ∗, a#r}.
− If a sequent - ` - is not derivable we write - 6` -.
−We write important(Γ ;∆ ` r) for {φ | a : φ ∈ Γ, Γ ;∆ 6` a#r}.

If φ exists such that Γ ;∆ ` r : φ is derivable, call Γ ;∆ ` r typable.

Remark 10 We compare the rules in Figures 1 and 2:

−Compare (T⊥E) with (⊥E). ‘xf’ stands for ex falsum. (T⊥E) corresponds
with (⊥E) in a standard way. No surprises here.
−Compare (T⇒I) with (⇒I). (T⇒I) does not discharge a : φ because r may
contain an unknown X. We intend X to be instantiated to t which (because
instantiation need not avoid capture) may mention a; see Definition 16. We
remember a : φ in the typing context so that we can use it to build t, if we like.
We can mimic (⇒I) using (T⇒I) and (Tfr).
− (Tfr) is an explicit discharge rule. It connects b#r, which we can read as
‘b will discharged in the (possibly incomplete) derivation represented by r’
with actual discharge of b; after discharge, we cannot use b to construct any
further derivations. As we just argued above, in the presence of unknowns it is
convenient to separate these two notions.
−Compare (T∀I) with (∀I). a 6∈ fa(Φ) is intuitively ‘a is not free in any of
the assumptions Φ used to prove φ’. a 6∈ fa(important(Γ, a:∗;∆ ` r)) generalises
this to take account of unknowns and freshness assumptions on them.
−Compare (a#b), (a#b′), and (a#b′′). (a#b) and (a#b′′) are as in [UPG04];
distinct atoms are fresh. In (a#b′) we account for the type of b. For example:

a : P(c), X : P(c), c : ∗; a#X ` a#X
a:P(c), X:P(c), c:∗; a#X 6` c#X a:P(c), X:P(c), c:∗; a#X 6` c#a

2.2 Examples

The derivations below type terms representing derivations from the Introduc-
tion; one is complete, the other incomplete. At each stage the term being typed

represents a (possibly incomplete) Natural Deduction derivation. Write ‘Γ ; ∅ ` r’
as ‘Γ ` r’. Write Γ for a : A, p : A⇒ B⇒ C, q : A⇒ B:

(Tax)
Γ ` a : A

(Tax)
Γ ` q : A⇒ B

(Ty⇒E)
Γ ` qa : B

(Tax)
Γ ` a : A

(Tax)
Γ ` p : A⇒ B⇒ C

(T⇒E)
Γ ` pa : B⇒ C

(Ty⇒E)
Γ ` (pa)qa : C

(T⇒I)
Γ ` λa.((pa)qa) : A⇒ C

(Tfr)
p : A⇒ B⇒ C, q : A⇒ B ` λa.((pa)qa) : A⇒ C

(Tax)
Γ, X : B ` X : B

(Tax)
Γ, X : B ` a : A

(Tax)
Γ, X : B ` p : A⇒ B⇒ C

(T⇒E)
Γ, X : B ` pa : B⇒ C

(Ty⇒E)
Γ, X : B ` (pa)X : C

(T⇒I)
Γ, X : B ` λa.((pa)X) : A⇒ C

(Tfr)
p : A⇒ B⇒ C, q : A⇒ B, X : B ` λa.((pa)X) : A⇒ C

Derivations of Γ ` a#λa.((pa)qa) and Γ, X : B ` a#λa.((pa)X) are elided.7

Another example illustrates the side-condition on (T∀I). The two derivations

A

∀c.(A⇒ P(c))
(∀E)

A⇒ P(c)
(⇒E)

P(c)
(∀I)

∀c.P(c) (∀c.P(c))⇒ B
(⇒E)

B

··· X
∀c.P(c) (∀c.P(c))⇒ B

(⇒E)
B

(2)

are represented, writing Γ for a : A, p : ∀c.(A⇒ P(c)), q : (∀c.P(c))⇒ B, c : ∗, by:

(Tax)
Γ ` a:A

(Tax)
Γ ` p : ∀c.(A⇒P(c))

(T∀E)
Γ ` pc : A⇒P(c)

(T⇒E)
Γ ` pca : P(c)

(
c6∈fa(A),

c6∈fa(∀c.(A⇒P(c))
)

(T∀I)
Γ ` λc.(pca) : ∀c.P(c)

(Tax)
Γ ` q : (∀c.P(c))⇒B

(T⇒E)
Γ ` q(λc.(pca)) : B

(Tfr)
a : A, p : ∀c.(A⇒ P(c)), q : (∀c.P(c))⇒ B ` q(λc.(pca)) : B

(Tax)
Γ, X : P(c) ` X : P(c)

(
c 6∈ fa(A)
c 6∈ fa(∀c.(A⇒P(c)))

c 6∈ fa((∀c.P(c))⇒B))
)

(T∀I)
Γ, X : P(c) ` λc.X : ∀c.P(c)

(Tax)
Γ, X : P(c) ` q : (∀c.P(c))⇒B

(T⇒E)
Γ, X : P(c) ` q(λc.X) : B

(Tfr)
a : A, p : ∀c.(A⇒ P(c)), q : (∀c.P(c))⇒ B, X : P(c) ` q(λc.X) : B

Derivations of freshnesses are elided.
7 The (Tfr) in the second derivation is ill-advised, in the sense that intuitively we can-

not then instantiate X to qa; we might prefer to conclude the derivation with (T⇒I).
We leave this kind of choice to a derivation search algorithm, or we might favour a
‘safe’ variant of (Tfr) which insists r be closed (that r mention no unknowns).

2.3 Natural Deduction

We outline Natural Deduction and prove forms of soundness and completeness.

Definition 11 Call a finite set of types a (Natural Deduction) context. Let
Φ,Φ′ range over contexts.

Write Φ ` φ when φ may be derived using the rules in Figure 2 allowing ele-
ments of Φ as assumptions.8 In accordance with our convention, side-conditions
are in brackets. As is standard, square brackets in (⇒I) denote discharge of as-
sumptions; note that we may choose to discharge φ zero times (empty discharge).

Lemma 12 If Φ ` ψ and Φ ⊆ Φ′ then Φ′ ` ψ.

Definition 13 Call Γ ;∆ ` r closed when ∆ = ∅ and Γ mentions no unknowns.
Recall that we write ‘Γ ; ∅ ` r’ as ‘Γ ` r’.

Theorem 14 Suppose Γ ` r is closed and suppose Γ ` r : φ is derivable. Then
important(Γ ` r) ` φ (Definition 9) is derivable in Natural Deduction. (Proof in
the Appendix.)

Theorem 15 If Φ ` φ is derivable in Natural Deduction then there exists some
closed Γ ` r such that important(Γ ` r) ⊆ Φ and Γ ` r : φ. (Proof in the Ap-
pendix.)

2.4 Admissible rules

Definition 16 Define a substitution action r[X := t] by:

a[X := t] ≡ a X[X := t] ≡ t Y [X := t] ≡ Y xf(r)[X := t] ≡ xf(r[X := t])
(λa.r)[X := t] ≡ λa.(r[X := t]) (r′r)[X := t] ≡ (r′[X := t])(r[X := t])

Write unkn(Γ) for the unknowns mentioned in Γ . Figure 3 presents two kinds
of weakening and a form of Cut.

Theorem 17 (WeakX) is admissible (if the sequents above the line are deriv-
able, so are those below).

Proof. By a routine induction on derivations.

(Weaka) states that the atom is fresh for the incomplete parts in the derivation:

Theorem 18 (Weaka) is an admissible rule. (Proof in the Appendix.)

Lemma 19 states how instantiating unknowns is sound:

Lemma 19 Suppose that:
8 Note that in Natural Deduction, Φ, φ ` φ is automatic — ‘if we allow Φ, φ as as-

sumptions, then we assume φ, and so we have φ’. There is no need for a derivation
rule.

− Γ,X : ψ;∆ ` r : φ and Γ ;∆ ` t : ψ.
− Γ ;∆′ ` a#t for every a#X ∈ ∆.

Then:

− Γ ;∆′ ` r[X := t] : φ.
− Γ,X : ψ;∆ ` a#r implies Γ ;∆′ ` a#r[X := t], for every a.

(Proof in the Appendix.)

Cut in natural deduction is no more than ‘plugging the conclusion of one
derivation into the assumption(s) of another’. However, now assumptions may
be holes in incomplete derivations and we can ‘plug’ in a capturing manner. The
rule (Cut) specifies that operation, and from Lemma 19 we have:

Theorem 20 (Cut) is an admissible rule.

3 Derivation-search (sketch)

If by ‘backwards’ reasoning we mean ‘reasoning from conclusion towards as-
sumptions’ then the machinery so far is sufficient. To mix ‘forwards’ with ‘back-
wards’ reasoning we may need a little more; consider an incomplete derivation
of A, ∀c.(A⇒ P(c)), (∀c.P(c))⇒ B ` B (cf. (2) in Subsection 2.2):

A

∀c.(A⇒ P(c))

A⇒ P(c)

P(c)
···

(∀c.P(c))⇒ B
···

B

(3)

Our syntax does not represent this as a single term-in-context because the ‘hole’
is not at the leaf of the derivation. We can represent this incomplete derivation
as a set of sequents, all sharing the same typing and freshness context. Following
theorem-provers and unification algorithms we present this as a set of goals, in
rewriting style; the rewrites below can easily be converted into derivation trees:

Definition 21 Let Ξ range over finite sets of typings r : φ, a : ∗, and freshnesses
a#r. We may call A ∈ Ξ a goal and we may call Ξ a goal set.

A ∈ Ξ has intuition ‘we know A’ — not ‘we want to prove A’ — but if A
mentions an unknown X then what we know is incomplete and we would like
to complete it, i.e. prove it. To derive φ from Γ ;∆ we start rewriting from
X : φ, Γ,∆ for X not appearing in Γ or ∆, and we try to instantiate X. We can
declare success when we arrive at a goal state of the form Ξ, r : φ such that
Γ ;∆ ` r : φ.

For example to prove B from A, ∀a.(A⇒ P(a)), (∀a.P(a))⇒ B we can start
with X : B, a : A, p : ∀a.(A⇒ P(a)), q : (∀a.P(a))⇒ B and rewrite as follows (we

may drop types to save space):

X : B, a : A, p : ∀c.(A⇒P(c)), q : (∀c.P(c))⇒ B

(Weaka)−→ X : B, a, p, q, c : ∗
(T∀E)−→ X : B, a, p, q, c, pc : A⇒ P(c)

(T⇒E)−→ X : B, a, p, q, c, pc, pca : P(c)
(T∀I)−→ X : B, a, p, q, c, pc, pca, λc.(pca) : ∀c.P(c)

(T⇒E)−→ X : B, a, p, q, c, pc, pca, λc.(pca), q(λc.(pca)) : B
(Cut)−→ q(λc.(pca)) : B, a, p, q, c, pc, pca, λc.(pca)

We read off q(λc.(pca)) as our result. (3) is represented by the third line above:
X : B, a, p, q, pc, pca : P(c).

The following series of rewrites generates the derivation in (1) from the In-
troduction, also discussed in Subsection 2.2 (→∗ is multiple rewrites):

X : A⇒ C, p : A⇒B, q : A⇒ B⇒ C

(Weaka)−→ X : A⇒ C, p, q, a : A, a#X
(WeakX)−→ X : A⇒ C, p, q, a, a#X, X ′ : C

(T⇒I)−→ X : A⇒ C, p, q, a, a#X, X ′, λa.X ′ : A⇒ C

(Cut)−→ λa.X ′ : A⇒ C, p, q, a, X ′

(T⇒E)
−→∗ λa.X ′ : A⇒ C, p, q, X ′, pa : B, qa : B ⇒ C, (pa)qa : C
(Cut)−→ λa.((pa)qa) : A⇒ C, p, q, a, pa, qa, (pa)qa

4 Conclusions

We have seen how nominal terms, with a typing system, can model ‘incomplete
derivations’ in first-order logic. We use a ‘one-and-a-halfth order’ syntax, build-
ing on ideas from nominal terms and one-and-a-halfth order logic: atoms model
variable symbols and can be quantified (we use atoms to model both type and
term variables); unknowns model ‘holes’ in the derivation. This directly reflects
informal practice, in which holes in incomplete derivations are instantiated (sub-
stituted with capture).

We have tested our system on examples. We have shown the fragment without
unknowns is sound and complete with respect to ‘normal’ derivations (Subsec-
tion 2.3). We have shown instantiating unknowns is sound, and explored what
weakening means in the presence of the two levels of variable (Subsection 2.4).

This paper is part of a larger project which we expect to be a fruitful source
of research. In roughly decreasing order of certainty, we envisage the following:

Curry-Howard supposes normalisation of derivations — this translates to
an operational semantics for terms (Definition 3). This has to be more than
‘remove all β-reducts’ because, for example, the β-reduct in (λa.X)Y cannot be
reduced. To address this, an investigation into two-and-a-halfth order λ-calculus
is ongoing. This has λa and also a λX, substitution for X does not avoid capture
by λa, and nominal terms style α-equivalence. This paper would then be a rather
powerful type system (more than Hindley-Milner for example) for the λX-free
fragment of two-and-a-halfth order λ-calculus; we are reasonably confident this
would extend to λX.

The rewrite system alluded to in Section 3 can be viewed as an independent
system and studied. On that topic, we can ask whether the ideas in this paper
can be useful for the theory or practice of writing theorem provers. Perhaps the
representation itself will be useful, but nominal unification is known to be de-
cidable [UPG04]; thus, nominal terms have some good computational properties
which we may be able to exploit. Given the scale and complexity of modern
theorem-provers, answers to such questions may take some time to emerge —
but the situation is also far from hopeless, since in the first instance only the
prover’s ‘kernel’ is involved.

Indeed, we can simplify the types to propositional logic (simple types; we drop
the predicate part) and attempt to develop the rewrite system into a unification
algorithm à la Huet [Hue02]. We can also try to enrich types in the direction of a
dependent type theory and attempt to develop the typing rules from Figure 1 into
a dependent type theory p̊a samma Martin-Löf [NPS90]. This would be distinct
from a dependent type theory with elements of nominal techniques [SS04], which
treats atoms as variable symbols.

References

BKLN02. Roel Bloo, Fairouz Kamareddine, Twan Laan, and Rob Nederpelt. Param-
eters in pure type systems. In LATIN, pages 371–385. Springer, 2002.

Bog02. Mirna Bognar. Contexts in Lambda Calculus. PhD thesis, Vrije Universiteit
Amsterdam, 2002.

Che05. James Cheney. Nominal logic and abstract syntax. SIGACT News (logic
column 14), 36(4):47–69, 2005.

dB80. N.G. de Bruijn. A survey of the project AUTOMATH. In Hindley and
Seldin, editors, To H.B.Curry: Essays on Combinatory Logic, Lambda Cal-
culus and Formalism. Academic Press, 1980.

FG06. Maribel Fernández and Murdoch J. Gabbay. Curry-style types for nominal
rewriting. TYPES’06, 2006.

FG07. M. Fernández and M. J. Gabbay. Nominal rewriting. Information and
Computation, 205:917–965, 2007.

GL08. Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus.
ENTCS, 196:19–35, 2008.

GM07. Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order logic.
Journal of Logic and Computation, November 2007. Available online.

GP01. Murdoch J. Gabbay and A. M. Pitts. A new approach to abstract syntax
with variable binding. Formal Aspects of Computing, 13(3–5):341–363, 2001.

Hue02. Gérard Huet. Higher order unification 30 years later. In TPHOL 2002,
number 2410 in LNCS, pages 3–12, 2002.

Joj02. Gueorgui I. Jojgov. Holes with binding power. In TYPES, volume 2646 of
LNCS, pages 162–181. Springer, 2002.

Mat07. Aad Mathijssen. Logical Calculi for Reasoning with Binding. PhD thesis,
Technische Universiteit Eindhoven, 2007.

McB99. Conor McBride. Dependently Typed Functional Programs and their Proofs.
PhD thesis, University of Edinburgh, 1999.

Mil92. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Compu-
tation, 14(4):321–358, 1992.

MS06. Dale Miller and Alexis Saurin. A game semantics for proof search: prelimi-
nary results. In MFPS XXI, volume 155 of ENTCS, pages 543–563, 2006.

NPS90. B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Lof’s
Type Theory, volume 7 of Int’l Series of Monographs on Computer Science.
Clarendon Press, Oxford, 1990. Also online.

PCW05. Iman Hafiz Poernomo, John Newsome Crossley, and Martin Wirsing. Adapt-
ing Proofs-as-Programs: The Curry–Howard Protocol. Number XII in Mono-
graphs in Computer Science. 2005.

Pit02. Andrew M. Pitts. Equivariant syntax and semantics. In ICALP, pages
32–36. Springer-Verlag, 2002.

PR05. David J. Pym and Eike Ritter. A games semantics for reductive logic and
proof-search. In GALOP (Games for Logic and Programming Languages),
pages 107–123, 2005.

SP94. Paula Severi and Erik Poll. Pure type systems with definitions. In LFCS,
pages 316–328. Springer, 1994.

SP05. Mark R. Shinwell and Andrew M. Pitts. On a monadic semantics for fresh-
ness. Theoretical Computer Science, 342(1):28–55, 2005.

SS04. U. Schöpp and I. Stark. A Dependent Type Theory with Names and Binding.
In CSL, volume 3210 of LNCS, pages 235–249, 2004.

UPG04. C. Urban, A. M. Pitts, and Murdoch J. Gabbay. Nominal unification. The-
oretical Computer Science, 323(1–3):473–497, 2004.

US06. Pawel Urzyczyn and Morten Sørensen. Lectures on the Curry-Howard iso-
morphism, volume 149 of Studies in Logic. Elsevier, 2006.

A Technical appendix

We will use the following fact without comment:

Lemma 22 If Γ ` r is closed (so Γ mentions no unknowns and the freshness
context is empty) and Γ ` r is typable, then r mentions no unknowns.

Proof (of Theorem 14). By induction on the derivation of Γ ` r : φ.

−The case of (Tax). Suppose Γ, a : φ ` a : φ.
It is easy to calculate that important(Γ, a : φ ` a) = {φ}; then φ ` φ is a fact (see
Footnote 8).
−The case of (T⇒I). Suppose Γ, a : φ ` λa.s : φ⇒ ψ and Γ, a : φ ` s : ψ.
By inductive hypothesis important(Γ, a : φ ` s) ` ψ. We use (⇒I).
If important(Γ, a : φ ` λa.s) = important(Γ, a : φ ` s) \ {φ} then we discharge φ.
If important(Γ, a : φ ` λa.s) = important(Γ, a : φ ` s) then we discharge φ zero
times. There are no other possibilities.

−The case of (T⇒E). Suppose Γ ` r′r : ψ and Γ ` r′ : φ⇒ ψ and Γ ` r : φ.
By inductive hypothesis important(Γ ` r′) ` φ⇒ ψ and important(Γ ` r) ` φ.
By Lemma 12 and (T⇒E),

important(Γ ` r′) ∪ important(Γ ` r) ` ψ.

By the syntax-directed nature of the freshness rules in Figure 1, Γ ` a#r′r if
and only if both of Γ ` a#r′ and Γ ` a#r hold. Therefore,

important(Γ ` r′r) = important(Γ ` r′) ∪ important(Γ ` r).

The result follows.
−The case of (T∀I). Suppose Γ, a : ∗ ` λa.r : ∀a.φ, where

Γ, a : ∗ ` r : φ and a 6∈ fa(important(Γ, a : ∗ ` r)).

By inductive hypothesis important(Γ, a : ∗ ` r) ` φ. By (∀I),

important(Γ, a : ∗ ` r) ` ∀a.φ.

−The case of (T∀E). Suppose Γ, b : ∗ ` rb : φ[a := b] and Γ, b : ∗ ` r : ∀a.φ.
By inductive hypothesis important(Γ, b : ∗ ` r) ` ∀a.φ. By (∀E),

important(Γ, b : ∗ ` r) ` φ[a := b].

By reasoning similar to the case of (T⇒E) we can calculate that

important(Γ, b : ∗ ` rb) = important(Γ, b : ∗ ` r) ∪ important(Γ, b : ∗ ` b : ∗).

Now it is a fact that important(Γ, b : ∗ ` b : ∗) = ∅. The result follows.
−The case of (Tfr). Suppose Γ ` r : φ, and

Γ,A ` r : φ and Γ,A ` b#r where A ∈ {b : φ, b : ∗}.
By inductive hypothesis important(Γ,A ` r) ` φ.
If A = b : ∗ then

important(Γ,A ` r) = important(Γ ` r)

and the result follows immediately. If A = b : ψ then since Γ,A ` b#r again

important(Γ,A ` r) = important(Γ ` r).

The result follows.

By abuse of appendices, we place the proof of Theorem 18 before that of
Theorem 15. There is no circularity in the proofs and it is convenient for brevity;
the special case of Theorem 18 when Γ mentions no unknowns, is needed to prove
Theorem 15.

Proof (of Theorem 18). By induction on derivations. Only the case of (T∀I) is
of interest.

− Suppose Γ, a : ∗;∆ ` r : φ and a 6∈ fa(important(Γ, a : ∗;∆ ` r)). By inductive
hypothesis Γ, a : ∗, B;∆, b#X ` r : φ where X = unkn(Γ) and b 6∈ Γ, a : ∗. It is
not hard to calculate that Γ, a : ∗, B;∆, b#X ` b#r and so

a 6∈ fa(important(Γ, a : ∗, B;∆, b#X ` r)).

The result follows.

Proof (of Theorem 15). We prove by induction on the derivation of Φ ` φ that
there exists some closed typable Γ ` r such that:

− important(Γ ` r) ⊆ Φ and Γ ` r : φ.
− Γ satisfies a uniqueness property: if a : φ ∈ Γ and x : φ ∈ Γ then x = a (so
there is at most one atom of each type in Γ).9

We consider each possible rule in turn:

−The case of no rule; Φ ` φ because φ ∈ Φ.
Suppose fa(φ) = {b1, . . . , bn}. We take Γ = a : φ, b1 : ∗, . . . , bn : ∗ and r ≡ a.
−The case (⇒I). Suppose Φ ` φ⇒ ψ and Φ, φ ` ψ.
By inductive hypothesis there exists Γ ` r such that important(Γ ` r) ⊆ Φ ∪ {φ}
and Γ ` r : ψ.
If a : φ ∈ Γ for some a then let Γ ′ = Γ . If a : φ ∈ Γ for no a then let Γ ′ = Γ, a : φ
for some a not appearing in Γ . By Theorem 18 (see the comment preceding this
proof) Γ ′ ` r : φ. It is also a fact that important(Γ ` r) = important(Γ ′ ` r).
By (T⇒I) we have Γ ′ ` λa.r : φ⇒ ψ. It is a fact that Γ ′ ` a#λa.r. Therefore by
uniqueness, important(Γ ′ ` λa.r) = important(Γ ′ ` r) \ {φ} The result follows.
−The case (⇒E). Suppose Φ ` ψ and Φ ` φ⇒ ψ and Φ ` φ.
By inductive hypothesis there exist:
• Γ ′ ` r′ such that important(Γ ′ ` r′) ⊆ Φ and Γ ′ ` r′ : φ⇒ ψ.
• Γ ` r such that important(Γ ` r) ⊆ Φ and Γ ` r : φ.

Without loss of generality we may assume that Γ ∪ Γ ′ satisfies our uniqueness
condition; we rename atoms to make this true if necessary.
We use (T⇒E) and the fact that important(Γ ∪ Γ ′ ` r′r) ⊆ Φ.
−The case (∀I). Suppose Φ ` ∀a.φ where a 6∈ fa(Φ) and Φ ` φ.
By inductive hypothesis there exists Γ ` r such that important(Γ ` r) ⊆ Φ and
Γ ` r : φ. Since a 6∈ fa(Φ) we know that a 6∈ fa(important(Γ ` r)).
If a : ∗ ∈ Γ then let Γ ′ = Γ . If a : ξ ∈ Γ for some type ξ then we are in the
pathological situation that a 6∈ fa(φ) and a : ξ ∈ Γ ‘by mistake’; we rename a. If
a : ∗ 6∈ Γ then let Γ ′ = Γ, a : ∗. By Theorem 18 Γ ′ ` r : φ. It is also a fact that
important(Γ ` r) = important(Γ ′ ` r).
We use (T∀I) and the fact that important(Γ ′ ` r) = important(Γ ′ ` λa.r).
−The case (∀E). Suppose Φ ` φ[a := b] and Φ ` ∀a.φ.
By inductive hypothesis there are Γ and r such that important(Γ ` r) ⊆ Φ and
Γ ` r : ∀a.φ.
If b : ∗ ∈ Γ then let Γ ′ = Γ . If b : ∗ 6∈ Γ then let Γ ′ = Γ, b : ∗. By Theorem 18
Γ ′ ` r : ∀a.φ. It is also a fact that important(Γ ` r) = important(Γ ′ ` r).
9 Here x ranges over all atoms, not necessarily permutatively, so perhaps x = a.

We use (T∀E) and the fact that

important(Γ ′ ` r) = important(Γ ′ ` rb).

Lemma 23 Suppose that:

− Γ,X : ψ;∆ ` r : φ and Γ ;∆ ` t : ψ.
− Γ ;∆′ ` a#t for every a#X ∈ ∆.

Then important(Γ ;∆′ ` r[X := t]) ⊆ important(Γ,X : ψ;∆ ` r).

Proof. By a routine induction on r. We consider cases:

−The case of a. Easy.
−The case of X. We calculate:

important(Γ,X : ψ;∆ ` X) = {φ | a : φ ∈ Γ, a#X 6∈ ∆}

By assumption important(Γ ;∆′ ` t) ⊆ {φ | a : φ ∈ Γ, a#X 6∈ ∆}.
Other cases are easier.

Proof (of Lemma 19). By induction on the derivation of Γ,X : ψ;∆ ` r : φ. The
first part is routine, we consider only two cases:

−The case (a#b′). Suppose Γ, a : ∗, b : φ′, X : ψ;∆ ` a#b is derived by (a#b′).
Then a 6∈ fa(φ′) and it follows that

Γ, a : ∗, b : φ′;∆′ ` a#b.

Since b[X := t] ≡ b, we are done.
−The case (a#λb). Suppose Γ,X : ψ;∆ ` a#r and Γ,X : ψ;∆ ` a#λb.r is de-
rived by (a#λb). By inductive hypothesis Γ ;∆′ ` a#r[X := t] and so

Γ ;∆ ` a#λb.(r[X := t]).

Since λb.(r[X := t]) ≡ (λb.r)[X := t], we are done.

For the second part we consider some cases:

−The case (Tax). Suppose Y : ξ ∈ Γ and Γ,X : ψ;∆ ` Y : ξ is derived by
(Tax). Then Γ ;∆′ ` Y : ξ. Since Y ≡ Y [X := t], we are done.
Similarly for Γ,X : ψ;∆ ` a : ξ.
Suppose Γ,X : ψ;∆ ` X : ψ is derived by (Tax). By assumption Γ ;∆′ ` t : ψ.
Since t ≡ X[X := t], we are done.
−The case (T⇒I). Since (λa.r)[X := t] ≡ λa.(r[X := t]). The cases of (T⇒E)
and (T∀E) are similar.
−The case (T∀I). Since (λa.r)[X := t] ≡ λa.(r[X := t]) and from Lemma 23.
−The case (Tfr).
Suppose Γ, A, X:ψ;∆ ` r : φ because Γ, A, X:ψ; ∆, b#X ` r : φ and suppose
Γ, A, X:ψ; ∆, b#X ` b#r, where b 6∈ ∆ and A is b : ∗ or b : ξ for some ξ.
By inductive hypothesis and some calculations, Γ, A; ∆′, b#X ′ ` r[X := t] : φ
and Γ, A; ∆′, b#X ′ ` b#r[X := t], for a suitable X ′ and ∆′ where b 6∈ ∆′. The
result follows.

(A ∈ {a : φ, a : ∗, X : φ})
(Tax)

Γ, A; ∆ ` A

Γ ;∆ ` r : ⊥
(T⊥E)

Γ ;∆ ` xf(r) : φ

Γ, a : φ; ∆ ` r : ψ
(T⇒I)

Γ, a : φ; ∆ ` λa.r : φ⇒ ψ

Γ ; ∆ ` r′ : φ⇒ ψ Γ ; ∆ ` r : φ
(T⇒E)

Γ ; ∆ ` r′r : ψ

Γ, a : ∗; ∆ ` r : φ a 6∈ fa(important(Γ, a : ∗;∆ ` r))
(T∀I)

Γ, a : ∗; ∆ ` λa.r : ∀a.φ

Γ, b : ∗; ∆ ` r : ∀a.φ
(T∀E)

Γ, b : ∗; ∆ ` rb : φ[a := b]

Γ, A; ∆, b#X ` r : φ Γ, A; ∆, b#X ` b#r (A ∈ {b : ψ, b : ∗}, b 6∈ ∆)
(Tfr)

Γ ;∆ ` r : φ

(a#b)
Γ, a : φ, b : φ;∆ ` a#b

(a#b′′)
Γ, a : ∗, b : ∗;∆ ` a#b

(a#λa)
Γ ;∆ ` a#λa.r

Γ ;∆ ` a#r
(a#λb)

Γ ;∆ ` a#λb.r

(a#X)
Γ ;∆, a#X ` a#X

(a 6∈ fa(φ))
(a#b′)

Γ, a : ∗, b : φ;∆ ` a#b

Γ ;∆ ` a#r′ Γ ;∆ ` a#r
(a#app)

Γ ;∆ ` a#r′r

Γ ;∆ ` a#r
(a#xf)

Γ ;∆ ` a#xf(r)

Fig. 1. Typing and freshness derivation rules

⊥
(⊥E)

φ

[φ]
···
ψ

(⇒I)
φ⇒ ψ

φ⇒ ψ φ
(⇒E)

ψ

Φ···
φ (a 6∈ fa(Φ))

(∀I)
∀a.φ

∀a.φ
(∀E)

φ[a := b]

Fig. 2. Natural Deduction style derivation rules

Γ ;∆ ` r : φ (X 6∈ Γ)
(WeakX)

Γ, X : ψ;∆ ` r : φ

Γ ;∆ ` r : φ (B ∈ {b : ψ, b : ∗}, a 6∈ Γ)
(Weaka)

Γ, B;∆, b#unkn(Γ) ` r : φ

Γ,X:ψ;∆, a1#X, . . . , an#X ` r : φ Γ ;∆ ` t:ψ Γ ;∆ ` ai#t (1≤i≤n) (X 6∈∆)
(Cut)

Γ ;∆ ` r[X := t] : φ

Fig. 3. Admissible rules

	One-and-a-halfth order terms: Curry-Howard and incomplete derivations
	Murdoch J. Gabbay and Dominic P. Mulligan
	Introduction
	Terms, types, and Natural Deduction
	Terms and types
	Examples
	Natural Deduction
	Admissible rules

	Derivation-search (sketch)
	Conclusions
	Technical appendix

