
D
RA

FT

Permissive nominal terms and their unification:
an infinite, co-infinite approach to nominal techniques

Gilles Dowek, Murdoch J. Gabbay, Dominic P. Mulligan

Abstract

Nominal terms extend first-order terms with binding. They lack some properties of
first- and higher-order terms: Terms must be reasoned about in a context of ‘freshness
assumptions’; it is not always possible to ‘choose a fresh variable symbol’ for a nominal
term; it is not always possible to ‘α-convert a bound variable symbol’ or to ‘quotient by
α-equivalence’; the notion of unifier is not based just on substitution.

Permissive nominal terms closely resemble nominal terms but they recover these
properties, and in particular the ‘always fresh’ and ‘always rename’ properties. In the
permissive world, freshness contexts are elided, equality is fixed, and the notion of uni-
fier is based on substitution alone rather than on nominal terms’ notion of unification
based on substitution plus extra freshness conditions.

We prove that expressivity is not lost moving to the permissive case and provide
an injection of nominal terms unification problems and their solutions into permissive
nominal terms problems and their solutions.

We investigate the relation between permissive nominal unification and higher-order
pattern unification. We show how to translate permissive nominal unification problems
and solutions in a sound, complete, and optimal manner, in suitable senses which we
make formal.

Key words: Nominal unification, higher-order pattern unification, permissive nominal
techniques

IThanks to the anonymous referees.
April 25, 2010

http://www.lix.polytechnique.fr/~dowek
http://www.gabbay.org.uk
http://www.macs.hw.ac.uk/~dpm8

D
RA

FT

Contents

1 Introduction 3
1.1 About nominal terms and permissive nominal terms 3
1.2 Difference 1: about fixing freshness contexts 4
1.3 Difference 2: about choosing fresh atoms 5
1.4 Permissive nominal terms in this paper . 7
1.5 Map of the paper . 7

2 Permissive nominal terms 8
2.1 Foundations of permission sets . 12

3 Substitutions, problems, and solutions 12
3.1 Substitutions . 12
3.2 Unification problems, and solutions . 13

4 Relation to nominal terms 14
4.1 Alpha-equivalence between nominal and permissive nominal terms . . . 14
4.2 Substitutions and solutions between nominal and permissive nominal

unification problems . 16

5 Support inclusion problems 17
5.1 Simplification reduction and normal forms 17
5.2 Building solutions for support inclusion problems 19
5.3 Support reduction example . 22

6 Permissive nominal unification problems 22
6.1 The unification algorithm . 22
6.2 Examples of the algorithm . 24
6.3 Preservation of solutions . 25
6.4 Simplification rewrites calculate principal solutions 26

7 Lambda-term syntax 29

8 Translating nominal terms to lambda-term syntax 32
8.1 The translation, and its soundness . 32
8.2 Capturable atoms; injectivity and minimality 33

9 Translating substitutions; relating solutions of nominal and pattern unifica-
tion problems 35
9.1 Translating substitutions . 35
9.2 Translating permissive nominal unification to pattern unification; sound-

ness, weak completeness . 37
9.3 Strong Completeness . 40

10 Conclusions 43
10.1 Related work . 44
10.2 Future work . 45

2

D
RA

FT

A Supplementary proofs 48

1. Introduction

1.1. About nominal terms and permissive nominal terms
Many formal languages feature names and binding: examples include quantifica-

tion, λ-abstraction, sets comprehension {x | φ(x)}, and process-calculi name-hiding.
Binding is ubiquitous, because variables are there to be bound or substituted.

In contrast, variables cannot be bound in first-order terms: In first-order logic, vari-
ables are bound in propositions by quantifiers and not at all in terms; first-order rewrit-
ing does not allow binding as it is based on first-order terms; and, many programming
languages and proof systems allow datatypes of terms, but only of first-order terms.

This motivates logics where variables can be bound by any function or predicate
symbol [9], extensions of rewriting on terms with binders [28, 30, 10], and programming
languages and proof systems allowing datatypes with binders [36, 31, 39, 27, 35] and
more generally, definitions of a notion of term where variables may be bound.

In particular, this motivates nominal terms [40]. They are designed to directly repre-
sent informal schematic specifications. For example:

Informal equality: If y 6∈ fv(t) then λx.t is α-equivalent to λy.[y/x]t.
Nominal terms: b#X ` λ[a]X = λ[b](b a) ·X
Permissive: λ[a]XS = λ[b](b a) ·XS , where b 6∈ S
Informal unification: Which t and u make λx.λy.(y t) equal to λx.λx.(xu)?
Nominal unification: ∅ ` λ[a]λ[b](bX) ?= λ[a]λ[a](a Y)
Permissive: λ[a]λ[b](bXS) ?= λ[a]λ[a](a Y S) (here, a ∈ S, b ∈ S)

The first example is part of the usual specification of α-equivalence. The second exam-
ple is from [40]. Definitions of nominal and permissive nominal terms will follow.

Nominal terms have been explored in logic-programming [7], rewriting [10], logic
[19, 21], and elsewhere.

An intuition of the translation from informal specification to (permissive) nominal
terms is as follows:

• Object-level variable symbols x and y correspond to atoms a and b (Definition 2.1).

• Meta-level variables t and u correspond to unknowns X .

Substitution of unknowns is capturing, which models the effect of writing “set t
to be x in λx.t; we get λx.x”. Similarly, (λ[a]X)[X:=a] ≡ a.

Atoms and unknowns are two distinct levels of variable, just as object- and meta-
level are two levels.

• Conditions like x 6∈ fv(t) correspond to freshness conditions b#X in nominal terms.

b#X is a restriction, which is enforced on the notion of substitution, on what X
may be instantiated to. b#X is a promise to instantiate X only to terms for which
b is fresh (see the conditions ‘∇′ ` θ(∇)’ in Lemma 2.14, and ‘∇ ` a#θ(t)’ in
Definition 3.1 of [40]).

3

D
RA

FT

• Object-level renaming [y/x] is modelled by swapping (b a) (which maps b to a, a to
b, and all other atoms c to themselves; Definition 2.5).

Swappings are bijective on atoms and invertible, unlike renamings, and for this
reason they are naturally capture-avoiding.1 This gives them attractive mathemat-
ical properties which can be exploited in the mathematical theory. Using them
to manage renaming in α-equivalence is a conspicuous feature of nominal tech-
niques and follows [25, 40].

The reader can safely think of [y/x] as corresponding to (b a) so long as b (y) is
sufficiently fresh. It is notable that freshness side-conditions in informal practice
seem to appear exactly in those places in which they would be necessary for this
to work.

• λ and application are term-formers (function-symbols). In the examples above we
write application infix, as is standard.

Permissive nominal terms differ in two ways from nominal terms:

• Difference 1. Freshness information is fixed once and for all, and associated to
unknowns in the manner of a sorting or typing annotation.

For example: b#X ` X is a nominal term-in-freshness context X whose freshness
context insists that b not occur free in X . A corresponding permissive nominal
term is XS where S is a set of atoms we call the permission set of X , and b 6∈ S.

• Difference 2. Permission sets are sets of atoms that are both infinite and co-infinite
(see Remark 2.23; S ⊆ A is co-infinite when A \ S is infinite).

These combine with consequences which we now discuss.

1.2. Difference 1: about fixing freshness contexts
Difference 1 on its own is mostly a matter of presentation. It is mentioned already in

[40, Remark 2.6] (there, we would obtain ‘permission sets’ A such that A is infinite and
A \ A is finite). It is still worth reflecting briefly on what that difference in presentation
means, for some example results. Part 2 of Lemma 2.14 from [40] reads as follows:

If∇′ ` σ(∇) and ∇ ` a#t, then∇ ` a#σ(t).

The corresponding result in this paper (Lemma 3.3) reads as follows:

fa(rθ) ⊆ fa(r).

Parts 1 to 3 of Lemma 2.7 from [40] read as follows:

1. If ∇ ` a#π · t then ∇ ` π-1 · a#t.
2. If ∇ ` π · a#t then ∇ ` a#π-1 · t.
3. If ∇ ` a#t then ∇ ` π · a#π · t.

1For example, (b a) · [a](b a) ≡ [b]a (Definition 4.3) whereas (λx.(y x))[x/y] is equal to λx′.(xx′) where
x′ is chosen fresh; with the permutation, the capture-avoidance is automatic, with the renaming we have to
deliberately rename. This nice turn of phrase is due to Cheney, as far as we know.

4

D
RA

FT

These three statements correspond to one result in this paper (Lemma 2.17) which reads
as follows:

fa(π · r) = π · fa(r).

To us, the ‘permissive’ versions seem shorter and clearer.
In fact there is a little more to Difference 1 than presentation. If freshness contexts

are fixed then some ‘consistency’ properties of the same term across different freshness
contexts become irrelevant. For instance consider the weakening and strengthening results
for freshness contexts like those in Subsection 3.2 of [24] or Subsection 3.3.2 of [21]; if
we had used permissive nominal terms, then these results would have been irrelevant
and could have been omitted.

1.3. Difference 2: about choosing fresh atoms
The reader used to nominal terms can think of Difference 2 as allowing and requiring

infinite freshness contexts.2 Together with Difference 1, this gives us two key properties
which are absent in [40]:

• An infinite supply of fresh atoms is guaranteed for every term. There is no need to
change a freshness context to obtain fresh atoms, because they are already there.

• Terms may be directly quotiented by α-equivalence. They also become susceptible
to the nominal inductive reasoning principles of [25].

This matters. The nominal terms as presented in [40] cannot be quotiented byα-equivalence,
and cannot be subjected to the nominal inductive principles of nominal abstract syntax
[25]. In this respect, they are less tractable than first-order or higher-order terms, which
can be.

True enough, it is always possible to ‘add a fresh atom to the freshness context’ in
nominal terms and rename, but this causes similar difficulties to those encountered in
α-renaming on name-carrying syntax.

This is potentially a problem for the viability of any reasoning on, programming on,
or extensions of nominal terms. We have experienced this ourselves in [24, 23].

It becomes possible to argue against nominal terms because they appear to be harder
to manipulate than the language they describe, and in particular, because they reintro-
duce the problem of α-equivalence which nominal abstract syntax was originally de-
signed to solve.

The existence of permissive nominal terms demonstrates that in fact, the apparent
problem is just an artefact of the way matters were set up in [40]. We can quotient
permissive nominal terms by α-equivalence. In fact we can also use nominal inductive
reasoning principles to reason on permissive nominal terms [22, 15].

Turning to the issue of fresh atoms; in the world of finite freshness contexts based
on [40], we may always extend freshness contexts if we want more fresh atoms. This is
made formal for example by (fr) in [21, Figure 2] and (Tfr) in [24, Figure 1].

We can observe the effects of this solution to the problem of generating fresh atoms,
by considering the mathematics in [24]. (Tfr) is not a syntax-directed rule and this com-
plicates case-analysis on derivations. Subsection 5.1 of [24] is devoted to controlling this

2An similar idea is behind the notion of freshness contexts with sufficient freshnesses in [12, Subsection 3.1].
5

D
RA

FT

issue. Further, since freshness contexts may change during a proof, it is necessary to ac-
count for these changes in statements and proofs of results; the results in Subsection 5.3
of [24] therefore contain an existential quantification over ‘sufficiently freshened’ fresh-
ness contexts.

In fact we should recognise what happens in [24] because it is typical of something
we have seen before. A ‘state’ of ‘generated atoms’ is being carried by the freshness con-
text and threaded through all the proofs. This is a situation familiar from implementing
languages with binding; we may need to keep track of the ‘generated fresh atoms’ so
that when we generate a new one we can easily pick an ‘even fresher atom’. We thread
through the program a ‘state’ of ‘generated atoms’ (see for instance the ‘fresh monad’ in
Cheney’s FreshLib [5]). This is undesirable if it can be avoided, because it interferes with
the state-free style of functional programming, forces us to program more sequentially,
and it complicates code.3 This is what motivated FreshML [38, 39].

The paper [24] is not an isolated case. Similar issues have arisen in proofs on the
two-level lambda-calculus [23] and in other work [19, 18, 20]. Furthermore, the ‘fresh
atom’ issue is not restricted to proofs:

A prototype implementation of permissive nominal terms and their unification by
the third author [33] has a direct mechanism for generating a fresh name for any permis-
sive term. Even in a pure functional language like Haskell, no monadic programming
is needed just to generate fresh names.

Calvès recently wrote the Haskell Nominal Toolkit (HNT) [2], which provides effi-
cient implementations of several algorithms on nominal terms. The HNT provides an
elegant programming interface for manipulating nominal terms, and any efficient im-
plementation of permissive nominal terms would also likely expose a similar API to the
programmer.

However, Calvès’ underlying model is the nominal term and this is reflected in the
types of programs written with the HNT. Whereas core functions in the implementation
of permissive nominal terms (e.g. unification and alpha-equivalence checks) are pure,
the types of their HNT counterparts are heavily monadic, and explicit freshness contexts
must also be passed around.

As an example, we compare the types (1) of the alpha-equivalence check function
from the HNT and (2) of the implementation of permissive nominal terms:4

(1) alpha′check :: (Show t, Eq t, Ord a, Ordv)⇒ FrsCtxt v a→
Term a t v → Term a t v →
CS r (ExtB l e (ErrorT [Char])) m ()

(2) aeq :: (Eq a, Permissive b)⇒ Term a b→ Term a b → Bool

To us, the ‘permissive’ type seems shorter and clearer. An implementation of the
HNT, based on permissive nominal terms, would likely present less daunting types to

3Another layer of complexity arises. Some natural definitions rely on a sufficiently large supply of fresh
atoms being available. Even if we can always extend the freshness context, for a fixed freshness context there
may be inputs for which the function cannot be defined, and so is partial. This happens for example to the
canonical form function in Subsection 5.3 of [24].

4See the documentation for module Nominal.Matching at http://www.dcs.kcl.ac.uk/pg/
calves/hnt/doc/Nominal-Matching.html and module Terms.Terms in the permissive nominal
terms implementation source code, available at http://www.macs.hw.ac.uk/˜dpm8/permissive/

6

http://www.dcs.kcl.ac.uk/pg/calves/hnt/doc/Nominal-Matching.html
http://www.dcs.kcl.ac.uk/pg/calves/hnt/doc/Nominal-Matching.html
http://www.macs.hw.ac.uk/~dpm8/permissive/

D
RA

FT

the programmer, and removing the burden of handling freshness contexts would likely
make code shorter and neater.

1.4. Permissive nominal terms in this paper
Permissive nominal terms are designed to deal with these issues. Their theory of

α-equivalence and ‘fresh atom of’ restore the good features of nominal abstract syntax
without losing any expressivity or computational properties.

In fact, permissive nominal terms are ‘best possible’ in a certain sense: in [22, 15] we
demonstrate how the atoms-abstraction construction from [25] can be applied directly
to permissive nominal terms syntax. That is, in [22, 15] we show that it is possible to take
[a]r to be literally the Gabbay-Pitts atoms-abstraction of a in the set that is the abstract
syntax tree r, so that α-equivalence is literal identity, and the definition of permissive
nominal terms syntax (Definition 2.6) becomes a nominal abstract syntax style inductive
datatype of syntax-with-binding.

In this paper we introduce permissive nominal terms. We study their theory of uni-
fication. Given any new syntax, it is important to connect it to existing denotations.
Therefore, we relate permissive nominal terms and their unification to nominal unifica-
tion, and to unification of higher-order patterns. Denotations in nominal sets will be the
topic of a separate manuscript [15] (some elements are also in [22]).

The contributions are as follows:
• We introduce permissive nominal terms Definitions 2.6, along with theories of α-

equivalence and freshness with the ‘always fresh’ and ‘always rename’ properties
discussed above (Corollaries 2.14 and 2.15).

• It may look like permissive nominal terms are infinite, because the S in XS in Def-
inition 2.6 is an infinite set. In Remark 2.7 we mention that they are just as ‘finite’,
and computable-upon, as nominal terms.

• We develop a notion of unification (Definition 6.6). We use a simplified notion
of unifier (Definition 3.9) which is more like the notion of unifier from first- and
higher-order unification in that it is based just on a substitution, as compared to the
notion of unifier used in [40], which is not.

• We make precise the connection between nominal terms and permissive nominal
terms by translating nominal terms, nominal unification problems, and their solu-
tions, to the permissive context (Definition 4.6). We verify that no expressivity is
lost (Theorem 4.16).

• We connect permissive nominal terms and higher order patterns [32, 31] (Defini-
tion 8.3) by translating permissive nominal terms, unification problems, and their
solutions, to a very general notion of untyped pattern unification problems and
their solutions (Definition 9.1). We also prove that this translation is ‘best possible’
and ‘complete’ in senses which we make formal (Theorems 8.14 and Theorems 9.16
and 9.30).

1.5. Map of the paper
The paper is organised as follows:
We introduce permissive nominal terms in Section 2. Notable results are the ‘always

fresh’ and ‘always rename’ properties for terms (Corollaries 2.14 and 2.15 respectively).

7

D
RAFT

In Section 3 we introduce technical definitions and results which will prove useful
in the development of the unification algorithm, including permissive nominal terms
substitution (Definition 3.1), unification problems and their solutions (Definition 3.9).

We clarify the relationship between nominal and permissive nominal terms in Sec-
tion 4, by injecting nominal terms into permissive nominal terms (Definition 4.6 on-
wards). We also elucidate the relationship between solutions of nominal unification
problems, based on subsititution+freshness, and solutions of permissive nominal unifi-
cation problems, based on substitution alone (Definition 4.12).

In Sections 5 and 6 we present an algorithm to compute most general solutions to
permissive nominal unification problems (Definition 6.6). We prove it correct in Theo-
rem 6.25.

We define λ-terms syntax (Definition 7.1) in Section 7, and higher-order patterns
(Definition 7.19). Section 8 translates from permissive nominal term syntax to λ-term
syntax (Definition 8.3 onwards). We prove that this translation is ‘best possible’, in a
suitable sense which we make formal (Theorem 8.14).

Section 9 relates the solutions of higher-order pattern unification with solutions of
permissive nominal unification (Definition 9.1). We show that the instantiation order-
ing, hence the property of solutions being ‘more general’, is preserved by the translation
(Corollary 9.5). We prove a soundness and weak completeness result (Theorem 9.16).
Finally, we refine this to a more complex but more powerful completeness result (Theo-
rem 9.30).

In Section 10, we conclude and suggest ideas for future work.

2. Permissive nominal terms

We set up the syntax of permissive nominal terms (Definition 2.6) and their notion
of α-equivalence =α, which does not require a freshness context (Definition 2.13). We
prove that permissive nominal terms have the ‘always fresh’ and ‘always rename’ prop-
erties (Corollaries 2.14 and 2.15). Finally, we verify that =α is an equivalence relation;
this mirrors the result for nominal terms [40, Theorem 2.11], though the proof-method is
based on [10, Subsection 3.2]. Where we omit proofs they are routine (or see a technical
report [8], or [10]).

Note the two notions of ‘free variables of’; fa(r) is the free atoms in r, and fV (r) is
the free unknowns in r (Definitions 2.11 and 2.12). This reflects the two-level structure
of nominal terms familiar from previous work [40].

Definition 2.1. Fix two disjoint countably infinite sets A< and A> of atoms and write

A = A<] A>.

(Here] denotes disjoint set union) a, b, c, . . . will range over distinct elements of A (we
call this the permutative convention).

Definition 2.2. Define P by

P = {(A< \A) ∪B | A ⊆ A<, B ⊆ A>, A,B finite}.

Call elements of P permission sets. S, S′, T will range over permission sets.
8

D
RA

FT

Call S ⊆ A co-infinite when A \ S is infinite. P is a set of infinite, co-infinite sets of
atoms.5

Definition 2.3. For each permission set S fix a disjoint countably infinite set of un-
knowns of sort S. XS , Y S , ZS , will range over distinct unknowns of sort S. If S 6= S′

then there is no particular connection between XS and XS′ . V will range over finite
sets of unknowns (we use this from Section 5 onwards).

Definition 2.4. Suppose f is a function from atoms to atoms. Define nontriv(f) by:

nontriv(f) = {a | f(a) 6= a}

This has also been called the support of π [25].

Definition 2.5. A (finite) permutation is a bijection on atoms such that nontriv(π) is
finite. π and π′ will range over finite permutations.

Write π◦π′ for the composition of π and π′ (so (π◦π′)(a) = π(π′(a))). Write id for the
identity permutation (so id(a) = a always). Write (a b) for the swapping permutation
that swaps a and b.

Definition 2.6. Fix a set of term-formers. f, g, h will range over distinct term-formers.
Define (permissive nominal) terms by:

r, s, t, . . . ::= a | f(r, . . . , r) | [a]r | π ·XS

We write ≡ for syntactic identity; r ≡ s when r and s denote identical terms. Note
that XS (the unknown) is not a term, however π ·XS is a term and in particular id ·XS

is a term, which we may write as XS .

Remark 2.7. Permissive-nominal terms are finite. They are finitely branching finitely
deep trees.

Equality of permissive-nominal terms may be calculated in finite time. Permission
sets trivially admit a finite representation as the pair of finite sets A and B in Defini-
tion 2.2.

In an implementation of the algorithms in this paper by Mulligan [33], atoms are im-
plemented concretely as numbers. A< is identified with the even numbers. Permission
sets are represented finitely as their finite deviation from A<.

Another, quite elegant, presentation is possible using exclusive or; see Remark 2.23.

5Other versions of P are possible.
We believe that a sufficient property for P is that it be: co-infinitely down-closed (so if S ∈ P and S′ ⊆ S is

co-infinite, then S′ ∈ P); and such that for any finite {S1, . . . , Sn} ⊆ P , the union S1 ∪ . . .∪ Sn is co-infinite
(it does not have to be in P).

The first property is sufficient to build the permission set in (1). The second property is sufficient to guar-
antee Corollary 2.14. This is similar in spirit to the notion of support ideal from [6, Definition 4.1].

9

D
RA

FT

Remark 2.8. See Section 4 for a comparison between permissive nominal terms of Def-
inition 2.6 and ‘ordinary’ nominal terms [40]. Atoms represent variable symbols; term-
formers functions; unknowns meta-variables; abstraction [a]r binding; and π ·XS a meta-
variable with a suspended substitution, like ‘t[y/x]’. For example, suppose term-formers
app and λ:
− app(a, b) can represent ‘xy’ (x applied to y).
− app(lam([a]a), b) can represent ‘(λx.x)y’ (identity applied to y).
− λ([a]XS) can represent ‘λx.t’ if a ∈ S, and ‘λx.t, where x 6∈ fv(t)’ if a 6∈ S.

Definition 2.9. Define a permutation action by:

π · a ≡ π(a) π · (f(r1, . . . , rn)) ≡ f(π · r1, . . . , π · rn)
π · [a]r ≡ [π(a)](π · r) π · (π′ ·XS) ≡ (π◦π′) ·XS

Definition 2.10. If S ⊆ A, define the pointwise action by:

π · S = {π(a) | a ∈ S}

Definition 2.11. Define free atoms fa(r) by:

fa(a) = {a} fa(f(r1, . . . , rn)) =
⋃

1≤i≤n fa(ri)
fa([a]r) = fa(r)\{a} fa(π·XS) = π·S

Note that fa(π · XS) = π · S. Thus, an intuition for fa(r) is ‘the free atoms we can
have after instantiation’.

Definition 2.12. Define free unknowns fV (r) by:

fV (a) = ∅ fV (f(r1, . . . , rn)) = fV (r1) ∪ · · · ∪ fV (rn)
fV ([a]r) = fV (r) fV (π·XS) = {XS}

Definition 2.13. If A ⊆ A, define π|A, π restricted to A, to be:

π|A(a) = π(a) when a ∈ A
π|A(a) undefined when a ∈ A \A

Define α-equivalence =α inductively by the rules in Figure 1.

Corollaries 2.14 and 2.15 are properties that ‘ordinary syntax’ has, that nominal
terms do not have, and that permissive nominal terms recover; we can always choose a
fresh variable, and we can always α-rename with it.

Corollary 2.14. For any r1, . . . , rn there exist infinitely many b such that b 6∈
⋃
{fa(ri) | 1 ≤

i ≤ n}.
10

D
RA

FT

(=αaa)
a =α a

r1 =α s1 · · · rn =α sn
(=αf)

f(r1, . . . , rn) =α f(s1, . . . , sn)

r =α s
(=α[a])

[a]r =α [a]s

(b a) · r =α s (b 6∈ fa(r))
(=α[b])

[a]r =α [b]s

(π|S = π′|S)
(=αX)

π ·XS =α π
′ ·XS

Figure 1: Derivable α-equivalence on permissive nominal terms.

Proof. Define atoms(r) inductively by:

atoms(a) = {a} atoms(f(r1, . . . , rn)) = atoms(r1) ∪ . . . ∪ atoms(rn)
atoms([a]r) = atoms(r) ∪ {a} atoms(π ·XS) = nontriv(π)

It is not hard to prove by induction on term syntax that fa(ri) ⊆ atoms(ri) ∪
⋃
{S |

XS ∈ fV (ri)} for 1 ≤ i ≤ n. The syntax of ri is finite so atoms(ri) is finite, and also
fV (ri) is finite. It follows that

⋃
{S | XS ∈ fV (ri) for some i} is co-infinite. The result

follows.

Later on, we will often need to say ‘choose an atom fresh’ (see for example Defini-
tion 4.14). When we do this, we are using Corollary 2.14.

Corollary 2.15 expresses that we can always α-rename:

Corollary 2.15. For any r and a there exists infinitely many fresh b (so b 6∈ fa(r)) such that for
some s, [a]r =α [b]s.

Proof. Immediate, by Corollary 2.14 and (=α[b]).

Our changes do not affect basic results about nominal terms [40]; the proofs of the
following lemmas are by routine inductions (see [8] for details):

Lemma 2.16. 1. id · r ≡ r
2. π′ · (π · r) ≡ (π′◦π) · r

Lemma 2.17. π · fa(r) = fa(π · r).

Lemma 2.18. If r =α s then π · r =α π · s.

Lemma 2.19. If r =α s then fa(r) = fa(s).

Lemma 2.20. If π|fa(r) = π′|fa(r) then π · r =α π
′ · r.

Proposition 2.21. =α is transitive, reflexive, and symmetric.

Proof. See Appendix A. We use Lemmas 2.16, 2.17, 2.18, 2.19 and 2.20.

11

D
RAFT

2.1. Foundations of permission sets
Remark 2.22. The Fraenkel-Mostowski sets model used in the work which introduced
nominal techniques [25] famously does not admit sets like S and T , because they do not
have finite support. It is not an issue in this paper because we are not concerned with
representing permissive nominal syntax-up-to-binding. Permissive nominal syntax-up-
to-binding can be constructed though; see [22, 15]. See also generalisations of nominal
sets by the second author [11, 13] or by Cheney ([3, Section 3], or [6]).

Remark 2.23. Define S ∆ T (the exclusive or) by

S ∆ T = (S \ T) ∪ (T \ S).

It is a fact that for every S ∈ P , the set S ∆ A< is a finite set of atoms, and it is the
unique finite set such that A< ∆ (S ∆ A<) = S. This gives a nice finite representation
of permission sets, alternative to the two mentioned in Remark 2.7.

3. Substitutions, problems, and solutions

3.1. Substitutions
The purpose of an unknown XS is to represent an ‘unknown term/unknown ele-

ment’. We therefore define a substitution action for unknowns. Consistent with nominal
terms, substitution for unknowns is capturing for abstraction by atoms.

Definition 3.1. A substitution θ is a function from unknowns to terms such that fa(θ(XS)) ⊆
S always (so S in XS describes the ‘permission’ we have to instantiate XS , namely to
terms with free atoms in S). θ, θ′, θ1, θ2, will range over substitutions.

Write id for the identity substitution mapping XS to id ·XS always. It will always
be clear whether id means the identity substitution or permutation. Suppose fa(t) ⊆ S.
Write [XS :=t] for the substitution such that

[XS :=t](XS) ≡ t and [XS :=t](Y T) ≡ id · Y T for all other Y T .

‘fa(θ(XS)) ⊆ S’ looks absent in nominal terms theory ([40, Definition 2.13], [10,
Definition 4]), yet it is there: see the conditions ‘∇′ ` θ(∇)’ in Lemma 2.14, and ‘∇ `
a#θ(t)’ in Definition 3.1 of [40]. More on this in Section 4.

Definition 3.2. Define a substitution action on terms by:

aθ ≡ a f(r1, . . . , rn)θ ≡ f(r1θ, . . . , rnθ)
([a]r)θ ≡ [a](rθ) (π·XS)θ ≡ π·θ(XS)

Note that XSθ means ‘θ acting on id ·XS ’; θ(XS) means ‘the value of function θ at
XS ’.

Lemma 3.3. fa(rθ) ⊆ fa(r).

Proof. See Appendix A. We use Lemma 2.17.
12

D
RA

FT

Lemma 3.4. π · (rθ) ≡ (π · r)θ.

Proof. By induction on r.

Lemma 3.5. If θ1(XS) =α θ2(XS) for all XS ∈ fV (r), then rθ1 =α rθ2.

Proof. By induction on r.
• The cases a and f(r1, . . . , rn) are straightforward.
• The case [a]r. Suppose θ1(XS) =α θ2(XS) for every XS ∈ fV ([a]r). fV ([a]r) =

fV (r) so by inductive hypothesis rθ1 =α rθ2. By (=α[a]) also [a](rθ1) =α [a](rθ2).
The result follows by Definition 3.2.

• The case π · XS . By assumption, θ1(XS) =α θ2(XS). Using Lemma 2.18, π ·
(θ1(XS)) =α π · (θ2(XS)). By Definition 3.2 (π ·XS)θ1 =α (π ·XS)θ2, as required.

Lemma 3.6. If r =α s then rθ =α sθ.

Proof. By induction on the derivation of r =α s. We consider one case:
• The case (=α[b]). Suppose (b a) · r =α s and b 6∈ fa(r). Then ((b a) · r)θ =α sθ by

assumption. By Lemma 3.4, (b a) · (rθ) =α sθ. By Lemma 3.3, b 6∈ fa(rθ), therefore
[a](rθ) =α [b](sθ) by (=α[b]). By Definition 3.1, [a](rθ) ≡ ([a]r)θ, and the result
follows.

Definition 3.7. Define composition θ1◦θ2 by (θ1◦θ2)(XS) ≡ (θ1(XS))θ2.

Lemma 3.8. (rθ)θ′ ≡ r(θ◦θ′).

Proof. By induction on r. We consider one case:
• The case π ·XS

(π ·XS)(θ◦θ′) ≡ π · (θ◦θ′)(XS) Definition 3.2
≡ π · (θ(XS)θ′) Definition 3.7
≡ (π · θ(XS))θ′ Lemma 3.4
≡ ((π ·XS)θ)θ′ Lemma 3.4

3.2. Unification problems, and solutions
This is a brief subsection, but it is useful: A solution to Pr ‘makes the equalities

valid’, as for first- and higher-order unification. This simplifies the nominal unification
notion of solution (Definition 4.11 or [40, Definition 3.1]) based on ‘a substitution + a
freshness context’. We prove results about these definitions in Sections 4 (connection
with nominal unification) and 6 (unification algorithm).

Definition 3.9. An equality is a pair r ?= s. A problem Pr is a finite multiset of equali-
ties. Define Prθ by:

Prθ = {rθ ?= sθ | r ?= s ∈ Pr}

Say that θ solves Pr when r
?= s ∈ Pr implies rθ =α sθ. Write Sol(Pr) for the set of

solutions to Pr. Call Pr solvable when Sol(Pr) is non-empty.
13

D
RA

FT

4. Relation to nominal terms

In Subsection 3.2 we stated what a permissive nominal unification problem is, and
what a solution to it is. We now make precise a mathematical sense in which nominal
terms and their unification can be considered a subsystem of permissive nominal terms
and their unification.

We recall the notions of nominal term and nominal unification problem (Defini-
tions 4.2 and 4.11). We translate from the ‘nominal world’ to the ‘permissive nomi-
nal world’ (Definition 4.6). Theorem 4.9 expresses how this translation is sound and
complete for respective notions of α-equivalence. Theorem 4.16 then shows that fur-
thermore, solutions to unification problems are preserved 1-1 across the translation.

Recall from the Introduction that in nominal terms we often to enrich the freshness
context. An interesting feature of Definition 4.6 is how it maps nominal terms to permis-
sive nominal terms with free atoms in A<, which is an infinite, co-infinite set of atoms.
One way to view the interpretation of Definition 4.6 is therefore this: A< is ‘the atoms
we had available so far’ (any other permission set would do as well) and A> is ‘the
atoms with which we will extend the freshness context, in the future’. Both these sets
are infinite, and syntax is finite, so it is not absolutely necessary to explicitly separate
them: permissive nominal terms do this, for each fixed permission set S; nominal terms
do not.

4.1. Alpha-equivalence between nominal and permissive nominal terms
Definition 4.1. Fix a countably infinite set of nominal atoms, Ȧ. ȧ, ḃ, ċ, . . . will range
over distinct nominal atoms.

Fix a bijection ι between Ȧ and any permission set. For concreteness we will suppose
it is A< from Definition 2.2 but any permission set will do as well.

Fix a countably infinite set of nominal unknowns. Ẋ, Ẏ , Ż, . . . will range over
distinct nominal unknowns. A nominal permutation is a bijection π̇ on Ȧ such that
nontriv(π̇) is finite. π̇, π̇′, π̇′′, . . . will range over permutations.

Write π̇-1 for the inverse of π̇, ˙id for the identity permutation, and π̇◦π̇′ for function
composition, as is standard. For example, (π̇◦π̇′)(ȧ) = π̇(π̇′(ȧ))

Definition 4.2. Define nominal terms by:

ṙ, ṡ, ṫ ::= ȧ | π̇ · Ẋ | [ȧ]ṙ | f(ṙ, . . . , ṙ)

Definition 4.3. Define a permutation action on nominal terms by:

π̇ · ȧ ≡ π̇(ȧ) π̇ · f(ṙ1, . . . , rn) ≡ f(π̇ · ṙ1, . . . , π̇ · rn)
π̇ · [ȧ]ṙ ≡ [π̇(ȧ)](π̇ · ṙ) π̇ · (π̇′ · Ẋ) ≡ (π̇◦π̇′) · Ẋ

Write ≡ for syntactic identity. f ranges over term-formers (Definition 2.1).

Definition 4.4. A freshness is a pair ȧ#ṙ. A freshness context is a finite set of fresh-
nesses of the form ȧ#Ẋ . Define derivable freshness on nominal terms by the rules in
Figure 2.

14

D
RA

FT

(#ḃ)
∆ ` ȧ#ḃ

∆ ` ȧ#ṙi (1 ≤ i ≤ n)
(#f)

∆ ` ȧ#f(ṙ1, . . . , ṙn)
(#[ȧ])

∆ ` ȧ#[ȧ]ṙ

∆ ` ȧ#ṙ
(#[ḃ])

∆ ` ȧ#[ḃ]ṙ

(π̇-1(ȧ)#Ẋ ∈ ∆)
(#Ẋ)

∆ ` ȧ#π̇ · Ẋ

Figure 2: Derivable freshness on nominal terms

(=ȧ)
∆ ` ȧ = ȧ

∆ ` ṙi = ṡi (1 ≤ i ≤ n)
(=f)

∆ ` f(ṙ1, . . . , ṙn) = f(ṡ1, . . . , ṡn)

∆ ` ṙ = ṡ
(=[ȧ])

∆ ` [ȧ]ṙ = [ȧ]ṡ

∆ ` (ḃ ȧ) · ṙ = ṡ ∆ ` ḃ#ṙ
(=[ḃ])

∆ ` [ȧ]ṙ = [ḃ]ṡ

(ȧ#Ẋ ∈ ∆ for every π̇(ȧ) 6= π̇′(ȧ))
(=Ẋ)

∆ ` π̇ · Ẋ = π̇′ · Ẋ

Figure 3: Derivable equality on nominal terms

Definition 4.5 repeats [40, Figure 2], up to differences in presentation:

Definition 4.5. An equality is a pair ṙ = ṡ. Define derivable equality on nominal terms
by the rules in Figure 3.

Definition 4.6. Define a mapping Jπ̇K from nominal permutations to permissive nomi-
nal permutations by:

Jπ̇K(ι(ȧ)) = ι(π̇(ȧ))
Jπ̇K(c) = c all c ∈ A>

Define an interpretation JṙK∆ by:

JȧK∆ ≡ ι(ȧ)
Jf(ṙ1, . . . , ṙn)K∆ ≡ f(Jṙ1K∆, . . . , JṙnK∆)

J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆

Jπ̇ · ẊK∆ ≡ Jπ̇K ·XS where S = A< \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}

Here, we make a fixed but arbitrary choice of XS for each Ẋ , injectively so that JẊK∆

and JẎ K∆ are always distinct.

JṙK∆ commutes with permutation and it preserves and reflects freshness:

Lemma 4.7. Jπ̇K · JṙK∆ ≡ Jπ̇ · ṙK∆

Proof. By induction on ṙ.

15

D
RA

FT

Lemma 4.8. ι(ȧ) 6∈ fa(JṙK∆) if and only if ∆ ` ȧ#ṙ.

Proof. See Appendix A.

Theorem 4.9 states that α-equivalent nominal-terms-in-context map precisely to α-
equivalent permissive nominal terms:

Theorem 4.9. JṙK∆ =α JṡK∆ if and only if ∆ ` ṙ = ṡ.

Proof. See Appendix A. We use Lemmas 4.7 and 4.8.

4.2. Substitutions and solutions between nominal and permissive nominal unification problems

Definition 4.10. A substitution θ̇ is a function from nominal unknowns to nominal
terms such that {Ẋ | θ̇(Ẋ) 6≡ ˙id · Ẋ} is finite. θ̇, θ̇′, θ̇′′, . . . will range over nominal
substitutions.

Write ˙id for the identity, mapping Ẋ to ˙id · Ẋ .
Define a substitution action on nominal terms by:

ȧθ̇ ≡ ȧ f(ṙ1, . . . , ṙn)θ̇ ≡ f(ṙ1θ̇, . . . , ṙnθ̇) ([ȧ]ṙ)θ̇ ≡ [ȧ](ṙθ̇) (π̇·Ẋ)θ̇ ≡ π̇·θ̇(Ẋ)

Definition 4.11. A unification problem Ṗ r is a finite multiset of freshnesses and equal-
ities. A solution to Ṗ r is a pair (∆, θ̇) such that ∆ ` ȧ#ṙθ̇ for every ȧ#ṙ ∈ Ṗ r, and
∆ ` ṙθ = ṡθ for every ṙ = ṡ ∈ Ṗ r. This follows [40, Definition 3.1].

Definition 4.12. We extend the interpretation of Definition 4.6 to solutions of nominal
unification problems by:

J(∆, θ̇)K(XS) ≡ Jθ̇(X)K∆ if id ·XS≡JXK∆ J(∆, θ̇)K(Y T) ≡ id ·Y T otherwise

Lemma 4.13. JṙK∆J(∆, θ̇)K ≡ Jṙθ̇K∆.

Proof. See Appendix A.

Definition 4.14. Define JṖ rK∆ by mapping ṙ = ṡ to JṙK∆
?= JṡK∆ and mapping ȧ#ṙ to

(b ι(ȧ)) · JṙK∆
?= JṙK∆, for some choice of fresh b (so b 6∈ fa(JṙK∆); in fact, it suffices to

choose some b 6∈ A<).

Lemma 4.15. Suppose b 6∈ fa(r). Then a 6∈ fa(r) if and only if (b a) · r =α r.

Proof. See Appendix A. We use Lemmas 2.16 and 2.17, and Proposition 2.21.

No solutions go missing, moving from the nominal to the permissive nominal world:

Theorem 4.16. (∆, θ̇) solves Ṗ r if and only if J(∆, θ̇)K solves JṖ rK∆.

16

D
RA

FT

Proof. If (∆, θ̇) solves Ṗ r then J(∆, θ̇)K solves JṖ rK∆. Suppose ∆ ` ṙθ̇ = ṡθ̇. Using
Lemma 4.13 and Theorem 4.9, JṙK∆J(∆, θ̇)K =α JṡK∆J(∆, θ̇)K.

Suppose ∆ ` a#ṙθ̇. Using Lemma 4.8, ι(ȧ) 6∈ fa(Jṙθ̇K∆). By Lemma 4.13, ι(ȧ) 6∈
fa(JṙK∆J(∆, θ̇)K). By Lemma 4.15, (b ι(ȧ)) · JṙK∆J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K, where b is fresh
(see Definition 4.14). By Lemma 3.4, ((b ι(ȧ)) · JṙK∆)J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K. The result
follows.

If J(∆, θ̇)K solves JṖ rK∆ then (∆, θ̇) solves Ṗ r. Suppose that JṙK∆J(∆, θ̇)K =α JṡK∆J(∆, θ̇)K.
By Theorem 4.9, ∆ ` rθ = sθ.

Suppose ((b ι(ȧ))·JṙK∆)J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K. By Lemma 3.4, (b ι(ȧ))·JṙK∆J(∆, θ̇)K =α

JṙK∆J(∆, θ̇)K. By Lemma 4.15, ι(ȧ) 6∈ fa(JṙK∆J(∆, θ̇)K). Using Lemma 4.13, ι(ȧ) 6∈
fa(Jṙθ̇K∆). By Lemma 4.8, ∆ ` a#ṙθ̇, and the result follows.

5. Support inclusion problems

The freshness symbol a#r used in [25] and [40] is ambiguous. Do we mean
− ‘a is not free in the syntax of r’ or
− ‘a is not in the support of the denotation of r’?

The first option can be called intensional or syntactic freshness; the second option can be
called extensional or semantic freshness.

In nominal terms this question is slightly obscured because a ‘free atoms of’ function
on terms is hard to define. In permissive nominal terms we can easily define a ‘free
atoms of’ function; see Definition 2.11, fa(r).

We have seen in Section 4 how nominal terms’ notion of freshness ‘a#r’ translates
to a syntactic freshness ‘a 6∈ fa(r)’.

Nominal terms unification solves equality and freshness problems within a single
rewrite system. When we designed the permissive nominal terms unification algo-
rithm, we solve these separately — one algorithm is described in this section, the other
(for equalities) is described in Section 6. This is simply a design choice, but it is in-
formed by the translation of # to a syntactic judgement, described above. For, in future
it may be useful to consider unification modulo equational theories (and note that se-
mantic freshness can be easily captured using equations; see [17, Theorem 5.5] or [21,
Theorem 4.52]). In the presence of equational theories, because we have factored out
fragment of the computation that checks ‘a 6∈ fa(r)’, that fragment will remain modular
and unaffected by the imposition of equality axioms.

Recall from Definition 3.1 that fa(θ(XS)) ⊆ fa(XS) = S, and from Lemma 3.3 that
instantiation must reduce the set of free atoms. We will exhibit an algorithm which, intu-
itively, solves the problem “please make fa(rθ) ⊆ T true” (Definition 5.9 and Lemma 5.7).
In fact the algorithm calculates solutions that are most general, in a sense made formal
in Theorem 5.20.

Next, in Section 6, we construct an algorithm to solve equality problems.

5.1. Simplification reduction and normal forms
Definition 5.1. A support inclusion is a pair r v T of a term and a permissions set. A
support inclusion problem is a finite multiset of support inclusions; Inc will range over
support inclusion problems. Call θ a solution to Inc when fa(rθ) ⊆ T for every r v T ∈

17

D
RA

FT

(va) a v T, Inc =⇒ Inc (a ∈ T)
(vf) f(r1, . . . , rn) v T, Inc =⇒ r1 v T, . . . , rn v T, Inc
(v[]) [a]r v T, Inc =⇒ r v T ∪ {a}, Inc
(vX) π ·XS v T, Inc =⇒ XS v π-1 · T, Inc (S 6⊆ π-1 · T, π 6= id)
(vX′) π ·XS v T, Inc =⇒ Inc (S ⊆ π-1 · T)

Figure 4: Simplification of support inclusion problems

Inc. Write Sol(Inc) for the solutions of Inc. Call Inc solvable when Sol(Inc) 6= ∅, and
non-trivial when nf (Inc) 6= ∅.

Definition 5.2. Define a simplification rewrite relation by the rules in Figure 5.2.

Definition 5.2 can easily be expressed as a type I conditional term rewrite system,
according to the classification scheme of [1, Definition 7.1.1]. This becomes evident if
we bear in mind that we can represent atoms as numbers, A< as the even numbers, S
as the finite set S ∆ A< (Remark 2.23), and T as the finite set T ∆ A<.

Theorem 5.3. If Inc =⇒ Inc′ then Sol(Inc) = Sol(Inc′).

Proof. First, we make the following claims:
Claim 1: If a ∈ T then fa(aθ) ⊆ T always. Since fa(aθ) = fa(a) = {a}.
Claim 2: fa(f(r1, . . . , rn)θ) ⊆ T if and only if fa(riθ) ⊆ T for 1 ≤ i ≤ n. Since fa(f(r1, . . . , rn)) =

fa(r1) ∪ . . . ∪ fa(rn), and f(r1, . . . , rn)θ ≡ f(r1θ, . . . , rnθ).
Claim 3: fa(([a]s)θ) ⊆ T if and only if fa(sθ) ⊆ T∪{a}. Suppose fa(([a]s)θ) ⊆ T , therefore

fa([a]sθ) ⊆ T . Then fa(sθ) \ {a} ⊆ T , therefore fa(sθ) ⊆ T ∪ {a} and the result
follows. The reverse direction is similar.

Claim 4: fa((π · XS)θ) ⊆ T if and only if fa(XSθ) ⊆ π-1 · T . We consider only one case.
Suppose θ = [XS :=t] and fa(t) ⊆ S, therefore fa((π ·XS)[XS :=t]) = fa(π · t) hence
fa(π · t) ⊆ T by assumption. By Lemma 2.17, π · fa(t) ⊆ T , and by Lemma 2.16 and
Lemma 2.17, (π-1◦π) · fa(t) ⊆ π-1 · T . As π-1◦π = id , we have fa(XS [XS :=t]) ⊆
π-1 · T , and the result follows.
Alternatively, suppose fa(t) 6⊆ S. Then fa((π · XS)[XS :=t]) = fa(π · XS) and
π · fa(XS) ⊆ T by Lemma 2.17. By Lemmas 2.16 and 2.17, fa(XS [XS :=t]) ⊆ π-1 · T ,
and the result follows. The reverse implication is no harder.

Claim 5: By Definition 3.2 we have fa((π · XS)θ) = fa(π · (XSθ)). If S ⊆ π-1 · T then
fa(π ·(XSθ)) ⊆ T always. Note, S ⊆ π-1 ·T if and only if π ·S ⊆ T and fa(π ·XS) =
π · S. Using Definition 3.2 and Lemma 2.17, fa(π · (XSθ)) = π · fa(θ(XS)) ⊆ π · S.
Therefore, fa((π ·XS)θ) ⊆ T , and the result follows.

We now proceed by case analysis on Inc =⇒ Inc′ (Definition 5.2):
• The case (va). Suppose a ∈ T . If θ ∈ Sol(a v T, Inc′) then θ ∈ Sol(Inc′) and

the result follows immediately. Conversely, suppose θ ∈ Sol(Inc′). Using Claim 1,
fa(aθ) ⊆ T , and the result follows.

• The case (vf). From Claim 2.
• The case (v[]). If θ ∈ Sol(r v T ∪ {a}, Inc′) then fa(rθ) ⊆ T ∪ {a}. By Claim 3,

fa([a](rθ)) ⊆ T . As fa([a](rθ)) = fa(([a]r)θ) and θ ∈ Sol(Inc′), the result follows.
The reverse implication is similar.

18

D
RA

FT

• The case (vX). Suppose S 6⊆ π-1 · T , π 6= id and θ ∈ Sol(π · XS v T, Inc), so
fa((π · XS)θ) ⊆ T . By Claim 4, fa(XSθ) ⊆ π-1 · T , and as θ ∈ Sol(Inc′), the result
follows. The reverse implication is similar.

• The case (vX′). Suppose S ⊆ π-1 ·T . If θ ∈ Sol(π ·XS , Inc′) then θ ∈ Sol(Inc′) and
the result follows. Conversely, suppose θ ∈ Sol(Inc′). By Claim 5, fa((π·XS)θ) ⊆ T .
The result follows.

Proposition 5.4. Support inclusion problem simplication is strongly normalizing.

Proof. See Appendix A.

We conclude with a few useful observations:

Definition 5.5. For every Inc make a fixed but arbitrary choice of normal form nf (Inc),
guaranteed to exist by Proposition 5.4.6

Definition 5.6. Call Inc consistent when a v T 6∈ nf (Inc) for all atoms a and permission
sets T .

Lemma 5.7. If Inc is consistent then all inc ∈ nf (Inc) have the form XS v T where S 6⊆ T .

5.2. Building solutions for support inclusion problems
Our main results are Theorems 5.13 and 5.20.

Definition 5.8. Define fV (Inc) by fV (Inc) =
⋃
{fV (r) | ∃T.r v T ∈ Inc}.

In words, fV (Inc) is “the unknowns appearing in terms appearing in Inc”.

Recall from Definition 2.3 that V ranges over finite sets of unknowns.

Definition 5.9. Let V range over finite sets of unknowns.
Suppose Inc is consistent. For every XS ∈ V make a fixed but arbitrary choice of

X ′
S′ such that X ′S

′
6∈ V and

S′ = S ∩
⋂
{T | XS v T ∈ nf (Inc)}. (1)

We make our choice injectively; for distinctXS ∈ fV (Inc) and Y T ∈ fV (Inc), we choose
X ′

S′ and Y ′
T ′ distinct. It will be convenient to write V ′VInc for the set of our choices

{X ′S
′
| XS ∈ V}.

Define a substitution ρVInc by:

ρVInc(X
S) ≡ id ·X ′S

′
if XS ∈ V

ρVInc(Y
T) ≡ id · Y T otherwise

6In fact, support inclusion simplification is confluent so nf (Inc) is also unique. A proof of confluence is in
a technical report [8]. For our purposes in this paper, it suffices to know that a normal form exists.

19

D
RA

FT

Remark 5.10. For example, take a, b, c ∈ A<, S = A< \ {c}, T = A< \ {a}, U = A< \ {b},
and V = {XS}.

It is easy to see that the support reduction problem {XS v T, XS v U} is in normal
form. LetX ′S

′
where S′ = A<\{a, b, c} be the fixed but arbitrary choice of fresh variable

made in Definition 5.9. Then:

ρVInc(X
S) = id ·X ′S

′
and

ρVInc(Y
T) = id · Y T for all other Y T

Remark 5.11. ρVInc is a substitution that “makes Inc true on V”. Nominal unification does
not have this notion because nominal terms unknowns are not permanently labelled
with freshness information — instead, nominal terms unification emits ‘fresh’ freshness
conditions.

It is easy to verify that

fa(ρVInc(X
S)) ⊆ S for all XS ∈ V.

In fact, ρVInc is the most general solution with property; intuitively, all other solutions
must factor through ρVInc on V . This is made formal in Theorem 5.20.

Lemma 5.12. If Inc is consistent then ρVInc ∈ Sol(Inc). (‘ρVInc solves Inc.’)

Proof. Suppose Inc is a =⇒-normal form. If XS v T ∈ Inc then ρVInc(X) = id ·X ′S
′

for
an S′ which satisfies S′ ⊆ T . The result follows.

More generally, if Inc is not a =⇒-normal form, by Theorem 5.3 Sol(Inc) = Sol(nf (Inc)),
and we use the previous paragraph.

Theorem 5.13. Inc is consistent (Definition 5.6) if and only if Inc is solvable (Definition 5.1).

Proof. By Theorem 5.3 Sol(Inc) = Sol(nf (Inc)), so it suffices to show the result for the
case when Inc is a =⇒-normal form.

Suppose Inc is inconsistent, so nf (Inc) contains a support inclusions of the form
a v T where a 6∈ T . Then aθ ≡ a always, so there is no substitution θ such that aθ ⊆ T .
Conversely, if Inc is consistent, the result follows by Lemma 5.12.

Definition 5.14. Suppose that Inc is consistent, fV (Inc) ⊆ V , and θ ∈ Sol(Inc). Define
a substitution θ−ρVInc by:

• (θ−ρVInc)(X
′S′) ≡ θ(XS) if XS ∈ V and ρVInc(X

S) ≡ id ·X ′S
′
.

• (θ−ρVInc)(X
S) ≡ θ(XS) if XS 6∈ V .

We check that Definition 5.14 is well-defined:

Lemma 5.15. If θ − ρVInc exists then it is well-defined.

Proof. Suppose θ − ρVInc exists. Then:
• Suppose XS 6= Y T , XS 6∈ V and Y T 6∈ V . By Definition 5.14, (θ − ρVInc)(X

S) ≡
θ(XS) and (θ − ρVInc)(Y

T) ≡ θ(Y T). The result follows, as substitutions are well-
defined.

20

D
RA

FT

• Suppose X ′S
′ 6= Y ′T

′
, ρVInc(X

S) ≡ id · X ′S′ , ρVInc(Y
T) ≡ id · Y ′T ′ and XS , Y T 6∈ V .

Then (θ − ρVInc)(X
′S′) ≡ θ(XS) and (θ − ρVInc)(Y

′T ′) ≡ θ(Y T). Since XS 6= Y T , the
result follows as substitutions are well-defined.

• Suppose X ′S
′ 6= Y T , ρVInc(X

S) ≡ id · X ′S′ , XS 6∈ V and Y T ∈ V . Then (θ −
ρVInc)(Y

T) ≡ θ(Y T) and (θ − ρVInc)(X
′S′) ≡ θ(XS). By Definition 5.9, ρVInc(X

S) 6≡
id · Y T as Y T ∈ V . The result follows as substitutions are well-defined.

The case Y ′T
′ 6= XS , ρVInc(Y

T) ≡ id · Y ′T ′ , Y T 6∈ V and XS ∈ V is similar to the case for
X ′S

′ 6= Y T , ρVInc(X
S) ≡ id ·X ′S′ , XS 6∈ V and Y T ∈ V .

Lemma 5.16. If θ ∈ Sol(Inc) then ρVInc exists.

Proof. By assumption, Inc is solvable. By Theorem 5.13, Inc is consistent. Using Defini-
tion 5.9, ρVInc exists.

Lemma 5.17. If ρVInc exists, then it is well-defined.

Proof. Suppose ρVInc exists and XS 6= Y T . Then:
• XS ∈ V and Y T ∈ V . Then ρVInc(X

S) = id · X ′S
′

and ρVInc(Y
T) = id · Y ′T

′
. By

Definition 5.9, X ′S
′

and Y ′T
′

are chosen so X ′S
′
6= Y ′

T ′ . The result follows.
• XS 6∈ V and Y T 6∈ V . Then ρVInc(X

S) = id ·XS and ρVInc(Y
T) = id · Y T . The result

follows.
• XS ∈ V and Y T 6∈ V . Then ρVInc(Y

T) = id · Y T and ρVInc(X
S) = id · X ′S

′
with

X ′
S′ 6∈ V . The result follows.

• The case XS 6∈ V and Y T ∈ V is similar to the case for XS ∈ V and Y T 6∈ V .

Lemma 5.18. If Inc =⇒ Inc′ then fV (Inc′) ⊆ fV (Inc).

Proof. By case analysis on the rules defining =⇒ (Definition 5.2).

Lemma 5.19. If θ ∈ Sol(Inc) and fV (Inc) ⊆ V then θ−ρVInc is a substitution.

Proof. By Lemma 5.16, ρVInc exists. We show fa((θ−ρVInc)(X
′S′)) ⊆ S by cases:

• The case id ·X ′S
′
≡ ρVInc(X

S) for XS ∈ V .
Using Lemma 5.18, fV (nf (Inc)) ⊆ fV (Inc). Then fV (nf (Inc)) ⊆ V , as fV (Inc) ⊆ V
by assumpyion. There are two sub-cases:
• The case XS 6∈ fV (nf (Inc)). Then S = S′ and (θ−ρVInc)(X

′S) = θ(XS) by
Definition 5.14. By assumption fa(θ(XS)) ⊆ S. The result follows.

• The case XS ∈ fV (nf (Inc)). By assumption, θ ∈ Sol(Inc) so θ ∈ Sol(nf (Inc))
using Theorem 5.3. Then fa(θ(XS)) ⊆ T for every T such that XS v T ∈
nf (Inc), using Definition 5.1. By Definition 5.14, S′ =

⋂
{T | XS v T ∈

nf (Inc)}. The result follows.
• Otherwise, (θ−ρVInc)(X

S) ≡ θ(XS) and fa(θ(XS)) ⊆ S by assumption.

Theorem 5.20. Suppose θ ∈ Sol(Inc) and fV (Inc) ⊆ V .
Then θ(XS) ≡ (ρVInc ◦(θ−ρVInc))(X

S) for every XS ∈ V .

Proof. For some freshX ′S 6∈ V , ρ(XS) ≡ id ·X ′S , and (θ−ρVInc)(X
′S) ≡ θ(XS). The result

follows by Lemma 2.16.
21

D
RAFT

5.3. Support reduction example
Suppose a, c ∈ A< and b, d 6∈ A<. Take S = A< = T , U = A<∪{b} and V = A<∪{d}.

We first run the support reduction algorithm on Inc = {a v S, f([a]a, id ·Y T) v T, (c a)·
ZU v S, (b a) ·WV v T}:

a v S , f([a]a, id · Y T) v T, (c a) · ZU v S, (b a) ·WV v T =⇒ (va)

f([a]a, id · Y T) v T , (c a) · ZU v S, (b a) ·WV v T =⇒ (vf)

[a]a v T , id · Y T v T, (c a) · ZU v S, (b a) ·WV v T =⇒ (v[])

id · Y T v T , (c a) · ZU v S, (b a) ·WV v T =⇒ (vX′)

(c a) · ZU v S , (b a) ·WV v T =⇒ (vX)

ZU v (c a) · S, (b a) ·WV v T =⇒ (vX)

ZU v (c a) · S, WV v (b a) · T

We take nf (Inc) = {ZU v (c a) · S, WV v (b a) · T}. By Definition 5.6 we have
nf (Inc) is consistent, therefore by Theorem 5.13 a solution for Inc exists.

We now construct ρVInc . Take W ′ and Z ′ as our injective choices of fresh unknowns.
Take U ′ = U ∩ ((c a) ·S ∩ (b a) ·T) and V ′ = V ∩ ((c a) ·S ∩ (b a) ·T). An easy calculation
shows that U ′ = A< \ {a} = V ′. We define ρVInc piecewise by:

ρVInc(ZU) = id · Z ′U
′

and ρVInc(WV) = id ·W ′V
′

and ρVInc(XS) = id ·XS for all other XS

It is easy to verify that this is in fact a substitution (i.e. fa(ρVInc(XS)) ⊆ S always).

6. Permissive nominal unification problems

We can now give an algorithm to compute solutions to permissive nominal unifica-
tion problems (Definition 3.9) and we prove that our algorithm computes most general
solutions. Note, as we have observed before, that the notion of problem and solution is
based just on equalities and substitutions.

6.1. The unification algorithm
Lemma 6.1. θ◦θ′ ∈ Sol(Pr) if and only if θ′ ∈ Sol(Prθ).

Proof. By unpacking Definition 3.9 and using Lemma 3.8.

Definition 6.2. If Pr is a problem, define a support inclusion problem Prv by:

Prv = {r v fa(s), s v fa(r) | r ?= s ∈ Pr}

Call a support inclusion problem Inc non-trivial when nf (Inc) 6= ∅.

22

D
RA

FT

(?=a) V; a ?= a, Pr =⇒ V;Pr
(?=f) V; f(r1, . . .)

?= f(s1, . . .), P r =⇒ V; r1
?= s1, . . . , P r

(?=[a]) V; [a]r ?= [a]s, Pr =⇒ V; r ?= s, Pr

(?=[b]) V; [a]r ?= [b]s, Pr =⇒ V; (b a) · r ?= s, Pr
(b 6∈ fa(r))

(?=X) V;π ·XS ?= π ·XS , P r =⇒ V;Pr

(I1) V;π ·XS ?= s, Pr
[XS :=π-1·s]

=⇒ V;Pr[XS :=π-1 · s]
(XS 6∈ fV (s), fa(s) ⊆ π · S)

(I2) V; r ?= π ·XS , P r
[XS :=π-1·r]

=⇒ V;Pr[XS :=π-1 · r]
(XS 6∈ fV (r), fa(r) ⊆ π · S)

(I3) V;Pr
ρVPrv=⇒ V ∪ V ′VPrv;Pr ρ

V
Prv

(Prv consistent and non-trivial)

Figure 5: Simplification rules for problems

Definition 6.3. Define a simplification rewrite relation V;Pr =⇒ V ′;Pr′ on unification
problems by the rules in Figure 5.

Call (?=a), (?=f), (?=[a]), (?=[b]), and (?=X) non-instantiating rules. Call (I1), (I2),
and (I3) instantiating rules. Write =⇒∗ for the transitive and reflexive closure of =⇒.

In (I3) we insist that Prv is non-trivial to avoid indefinite rewrites. We insist Prv is
consistent so that ρVPrv exists. ρVPrv and (V ′VPrv are defined in Definition 5.9.)

Definition 6.4. Define fV (Pr) =
⋃
{fV (r) ∪ fV (s) | r ?= s ∈ Pr}.

Definition 6.5. Suppose V is a set of unknowns. Define θ|V by:

θ|V(X) ≡ θ(X) if X ∈ V
θ|V(X) ≡ id ·X otherwise

(We overload |, for technical convenience: π|S is partial and θ|V is total.)

Definition 6.6. If Pr is a problem, define a unification algorithm by:

1. Rewrite fV (Pr);Pr using the rules of Definition 6.3 as much as possible, with
top-down precedence (so we apply (?=a) before (?=f), and so on down to (I3)).

2. If we reduce to V ′; ∅, we succeed and return θ|V where θ is the functional compo-
sition of all the substitutions labelling rewrites (we take θ = id if there are none).
Otherwise, we fail.

Proposition 6.7. The algorithm of Definition 6.6 always terminates.

Proof. See Appendix A.
23

D
RA

FT

6.2. Examples of the algorithm
Example one.

Suppose a, c ∈ A< and d 6∈ A<. Take S = A< \ {c}. Take V = {XS}. Suppose a
term-former g. We apply the algorithm to {g([a](id ·XS), [a]a) ?= g([c]a, [d]d)}:

V; g([a](id ·XS), [a]a) ?= g([c]a, [d]d) =⇒ (?=f)

V; [a](id ·XS) ?= [c]a , [a]a ?= [d]d =⇒ (?=[b])

V; (c a) ·XS ?= a , [a]a ?= [d]d
[XS :=c]

=⇒ (I1)

V; [a]a ?= [d]d =⇒ (?=[b])

V; (d a) · a ?= d =⇒ (?=a)

V; ∅ (Success!)

The algorithm succeeds and returns the substitution [XS :=c].

Example two.
Suppose a, c ∈ A< and b, d 6∈ A<. Take S = A< ∪ {b, d} and T = A< ∪ {f} and

U = A<. Take V = {XS , Y T }. Suppose a term-former f.
We apply the algorithm to {f([a]b, id · ZU , id ·XS) ?= f([d]b, [a]a, id · Y T)}:

V; f([a]b, id · ZU , id ·XS) ?= f([d]b, [a]a, id · Y T) =⇒ (?=f)

V; [a]b ?= [d]b , id · ZU ?= [a]a, id ·XS ?= id · Y T =⇒ (?=[b])

V; (d a) · b ?= b , id · ZU ?= [a]a, id ·XS ?= id · Y T =⇒ (?=a)

V; id · ZU ?= [a]a , id ·XS ?= id · Y T [ZU :=[a]a]
=⇒ (?=I1)

V; id ·XS ?= id · Y T [XS :=X′S
′
][Y T :=Y ′T

′
]

=⇒ (I3)

V ∪ {X ′S′ , Y ′T ′}; id ·X ′S′ ?= id · Y ′T ′ [X′S
′
:=Y ′T

′
]

=⇒ (I1)

V ∪ {X ′S′ , Y ′T ′}; id · Y ′T ′ ?= id · Y ′T ′ =⇒ (?=X)

V ∪ {X ′S′ , Y ′T ′}; ∅ (Success!)

Here X ′ and Y ′ are the choice of unknown made in Definition 5.9, and S′ = A< = T ′.
The algorithm succeeds and returns the substitution

[X ′S
′
:=Y ′T

′
]◦[XS :=X ′S

′
]◦[Y T :=Y ′T

′
]◦[ZU :=[a]a].

24

D
RA

FT

Example three.
An example that fails to unify. Take S = A<. Take V = {XS}. We run the algorithm

on {[a]([b](id ·XS)) ?= [a](id ·XS)}:

V; [a]([b](id ·XS)) ?= [a](id ·XS) =⇒ (?=[a])

V; [b](id ·XS) ?= id ·XS (Failure!)

The algorithm fails as the precondition of rule (I2),XS 6∈ fV ([b](id·XS)), the ‘occurs
check’, fails to hold. By Theorem 6.25 there is no solution to the unification problem.

6.3. Preservation of solutions
Lemma 6.8. If V;Pr =⇒ V;Pr′ by a non-instantiating rule (Definition 6.3) then Sol(Pr) =
Sol(Pr′).

Proof. See Appendix A. We use Lemmas 3.3 and 3.4, and Proposition 2.21.

Lemma 6.9. Suppose θ(XS) =α θ
′(XS) for all XS ∈ fV (Pr). Then θ ∈ Sol(Pr) if and only

if θ′ ∈ Sol(Pr).

Proof. Unpacking Definition 3.9 it suffices to show that rθ =α sθ if and only if rθ′ =α

sθ′, for every r ?= s ∈ Pr. This is easy using Lemma 3.5 and the fact by construction
(Definition 6.4) that fV (r) ⊆ fV (Pr) and fV (s) ⊆ fV (Pr).

Definition 6.10. Write θ−XS for the substitution such that

(θ−XS)(XS) ≡ id ·XS and
(θ−XS)(Y T) ≡ θ(Y T) for all other Y T .

In the right circumstances, a substitution θ can be factored as ‘a part of θ that does
not touch XS ’ and ‘a single substitution for XS ’:

Theorem 6.11. Suppose XSθ =α sθ and XS 6∈ fV (s). Then

XSθ =α X
S([XS :=s]◦(θ−XS)) and

Y T θ =α Y
T ([XS :=s]◦(θ−XS)).

Proof. We reason as follows:

XS([XS :=s]◦(θ−XS)) ≡ s(θ−XS) Definition 3.2
≡ sθ XS 6∈ fV (s), Lemma 3.5
=α X

Sθ Assumption

Y T ([XS :=s]◦(θ−XS)) ≡ Y T (θ−XS) Definition 3.7
≡ Y T θ Definition 6.10

25

D
RA

FT

6.4. Simplification rewrites calculate principal solutions
Definition 6.12. Write θ1 ≤ θ2 when there exists some θ′ such that XSθ2 =α X

S(θ1 ◦ θ′)
always. Call ≤ the instantiation ordering.

Definition 6.13. A principal (or most general) solution to a problem Pr is a solution
θ ∈ Sol(Pr) such that θ ≤ θ′ for all other θ′ ∈ Sol(Pr).

Our main results are Theorems 6.18 — the unification algorithm from Definition 6.6
calculates a solution — and 6.23 — the solution it calculates, is principal.

Lemma 6.14. If fV (Pr) ⊆ V and V;Pr =⇒ V ′;Pr′ using a non-instantiating rule, then
fV (Pr′) ⊆ V .

Proof. See Appendix A.

Lemma 6.15. fV (r[XS :=s]) ⊆ fV (r) ∪ fV (s).

Proof. By induction on r.

Lemma 6.16. If fV (Pr) ⊆ V and V;Pr θ=⇒ V ′;Pr′θ using an instantiating rule, then
fV (Pr′θ) ⊆ V ′.

Proof. There are two cases:

• The case (I1). Suppose fV (π ·XS ?= s, Pr′) ⊆ V and V;π ·XS ?= s, Pr′
[XS :=π-1·s]

=⇒
V ′;Pr′[XS :=π-1 · s] using (I1). Using Definition 6.4 and Lemma 6.15, we have
fV (Pr′[XS :=π-1 · s]) ⊆ fV (Pr′) ∪ fV (π-1 · s). The result follows.

• The case (I3). A corollary of Lemma 5.18.

Lemma 6.17. If XS ∈ V then ([XS :=s]◦θ)|V = [XS :=s]◦(θ|V)

Proof. We consider cases:
• The case XS with XS ∈ V . We reason as follows:

([XS :=s]◦θ)|V(XS) ≡ ([XS :=s]◦θ)(XS) Definition 6.5, XS ∈ V
≡ sθ Definition 3.7
≡ sθ|V Definition 6.5

• The case Y T with Y T ∈ V . We reason as follows:

([XS :=s]◦θ)|V(Y T) ≡ ([XS :=s]◦θ)(Y T) Definition 6.5, Y T ∈ V
≡ θ(Y T) Definition 3.7
≡ θ|V(Y T) Definition 6.5

• The case Y T with Y T 6∈ V . Since ([XS :=s]◦θ)|V(Y T) ≡ id · Y T and θ|V ≡ id · Y T .

Recall that θ|V is defined in Definition 6.5:

Theorem 6.18. If fV (Pr) ⊆ V then V;Pr
θ

=⇒∗ V ′; ∅ implies θ|V ∈ Sol(Pr).
26

D
RA

FT

Proof. By induction on the length of the path in
θ

=⇒∗ .
• Length 0. Then Pr = ∅ and θ ≡ id . The result follows.
• Length k + 1. There are three cases:

• The non-instantiating case. Suppose V;Pr =⇒ V;Pr′′
θ

=⇒∗ V ′; ∅. Using Lemma 6.14,
fV (Pr′′) ⊆ V and θ ∈ Sol(Pr′′) by inductive hypothesis. Using Lemma 6.8,
θ ∈ Sol(Pr), and the result follows.

• The case of (I1) or (I2). Suppose V;Pr
χ

=⇒ V;Prχ
θ′

=⇒∗ V ′; ∅. Using Lemma 6.16,
fV (Prχ) ⊆ V . By inductive hypothesis θ′|V ∈ Sol(Prχ). By Lemma 6.17,
(χ◦θ′)|V = χ◦(θ′|V). By Lemma 6.1, (χ◦θ′)|V ∈ Sol(Pr).

• The case of (I3). Suppose V;Pr
ρ

=⇒ V ′;Prρ
θ′

=⇒∗ V ′′; ∅. Using Lemma 6.16,
fV (Prρ) ⊆ V ′. By inductive hypothesis θ′|V′ ∈ Sol(Prρ). By Lemma 6.1,
ρ◦(θ′|V′) ∈ Sol(Pr). By Lemma 6.17, ρ◦(θ′|V′) = (ρ◦θ′)|V′ . By Lemma 6.9,
(ρ◦θ′)|V ∈ Sol(Pr).

Lemma 6.19. If θ1 ≤ θ2 then θ◦θ1 ≤ θ◦θ2.

Proof. By Definition 6.12, θ′ exists such that XSθ2 =α X
S(θ1◦θ′) always. Then:

XS(θ◦θ2) ≡ (XSθ)θ2 Lemma 3.8
=α (XSθ)(θ1◦θ′) Lemma 3.5
≡ XS((θ◦θ1)◦θ′) Lemma 3.8

Lemma 6.20. Suppose XSθ2 =α X
Sθ′2 always. Then θ1 ≤ θ2 implies θ1 ≤ θ′2.

Proof. By a routine calculation using Definition 6.12 and using Proposition 2.21.

Lemma 6.21. If θ ∈ Sol(Pr) (Definition 3.9) then θ ∈ Sol(Prv) (Definition 5.1).

Proof. By a routine calculation, using Definitions 3.9 and 6.2, and Lemma 2.19.

Lemma 6.22. If XS ∈ V then (θ|V −XS) = (θ −XS)|V .

Proof. We consider cases:
• The case XS . Then (θ|V −XS)(XS) = id ·XS and (θ−XS)|V(XS) = id ·XS . The

result follows.
• The case Y T with Y T 6∈ V . Then (θ|V −XS)(Y T) = id ·Y T and (θ−XS)|V(Y T) =

id · Y T . The result follows.
• The case Y T with Y T ∈ V . Then (θ|V−XS)(Y T) = θ|V(Y T) and (θ−XS)|V(Y T) =
θ(Y T). As θ|V(Y T) = θ(Y T) when Y T ∈ V , the result follows.

Theorem 6.23. Suppose fV (Pr) ⊆ V .

If V;Pr
θ

=⇒∗ V ′; ∅ then θ|V is a principal solution to Pr (Definition 6.13).

Proof. By Theorem 6.18, θ|V ∈ Sol(Pr). We prove θ|V is principal by induction on the

path length of V;Pr
θ

=⇒∗ V ′; ∅.
27

D
RA

FT

• Length 0. So Pr = ∅ and θ = id |V . By Definition 6.12, id |V ≤ θ′|V .
• Length k + 1. We consider the rules in Definition 6.3.

• The non-instantiating case. Suppose

V;Pr =⇒ V;Pr′
θ

=⇒∗ V ′; ∅

where V;Pr =⇒ V;Pr′ is a non-instantiating simplification rewrite. By in-
ductive hypothesis θ|V is a principal solution of Pr′. By Lemma 6.8 θ|V is a
principal solution of Pr. The result follows.

• The case (I1). Suppose fa(s) ⊆ π ·S andXS 6∈ fV (s). Write χ = [XS :=π-1 ·s].
Suppose Pr = π·XS ?= s, Pr′′ so that

V;π ·XS ?= s, Pr′′
χ

=⇒ V;Pr′′χ
θ′′

=⇒∗ V ′; ∅.

Further, suppose that θ′|V ∈ Sol(Pr).
By assumption (π · X)θ′ =α sθ

′, so by Lemma 3.4 π · θ′(X) =α sθ
′. By Lem-

mas 2.18 and 2.16 θ′(X) =α π
-1 · (sθ′), and by Lemma 3.4 θ′(X) =α (π-1 · s)θ′.

It follows by Theorem 6.11 and Lemma 6.9 that χ◦(θ′|V −XS) ∈ Sol(Pr). Us-
ing Lemma 6.22, (θ′|V − XS) = (θ′ − XS)|V . By Lemma 6.1, (θ′ − XS)|V ∈
Sol(Pr′′χ).
By Theorem 6.18, θ′′|V ∈ Sol(Pr′′χ). By Lemma 6.16, fV (Pr′′χ) ⊆ V .
By inductive hypothesis θ′′|V ≤ (θ′−XS)|V . By Lemma 6.19, χ◦(θ′′|V) ≤
χ◦(θ′−XS)|V . Now by assumption fV (s) ⊆ V andXS ∈ V . Using Lemma 6.17
it follows that χ◦(θ′′|V) = (χ◦θ′′)|V . By Lemma 6.22, (θ′−XS)|V = θ′|V−XS .
By Theorem 6.11 and Lemma 6.20, (χ◦θ′′)|V ≤ θ′|V as required.

• The case (I2) is similar to the case of (I1).
• The case (I3). Suppose Prv is consistent and non-trivial. Write ρ = ρVPrv , so

that

V;Pr
ρ

=⇒ V ′′;Prρ
θ′′

=⇒∗ V ′; ∅,

and suppose that θ′|V ∈ Sol(Pr).
By Theorem 6.18, θ′′|V′′ ∈ Sol(Prρ). It is a fact that V ′′ = V ∪ V ′VPrv , so
fV (Prρ) ⊆ V ′′. By Lemma 6.21, θ′|V ∈ Sol(Prv). By Theorem 5.20 and
Lemma 6.9, ρ◦(θ′|V−ρ) ∈ Sol(Pr). By Lemma 6.1, θ′|V−ρ ∈ Sol(Prρ).
By inductive hypothesis θ′′|V ≤ θ′|V−ρ. By Lemma 6.19, ρ◦θ′′|V ≤ ρ◦(θ′|V−ρ).
It is a fact that ρ◦(θ′′|V) = (ρ◦θ′′)|V . By Theorem 5.20 and Lemma 6.20, (ρ◦θ′′)|V ≤
θ′|V as required.

Lemma 6.24. 1. Suppose fa(s)⊆π · S and XS 6∈ fV (s). Write χ=[XS :=π-1 · s].
If V;Pr

χ
=⇒ V;Pr′ with (I1) or (I2) then θ ∈ Sol(Pr) implies θ −XS ∈ Sol(Pr′).

2. If V;Pr
ρ

=⇒ V ′;Pr′ with (I3) then θ ∈ Sol(Pr) implies θ − ρ ∈ Sol(Pr′).

Proof. 1. We consider the case of (I1); the case of (I2) is similar. Suppose Pr = π ·
XS ?= s, Pr′′ so that V;π ·XS ?= s, Pr′′

χ
=⇒ V;Pr′′χ. Now suppose θ ∈ Sol(Pr).

By Lemma 6.9 and Theorem 6.11, χ◦(θ−XS)) ∈ Sol(Pr). By Lemma 6.1, θ−XS ∈
Sol(Prχ). It follows that θ −XS ∈ Sol(Pr′′χ) as required.

28

D
RAFT

2. Suppose Prv is consistent and non-trivial. Write ρ = ρVPrv , so that V;Pr
ρ

=⇒ V ′′;Prρ.
Now suppose θ ∈ Sol(Pr). By Lemma 6.9 and Theorem 5.20, ρ◦(θ − ρ) ∈ Sol(Pr).
By Lemma 6.1, θ − ρ ∈ Sol(Prρ) as required.

Theorem 6.25. Given a problem Pr, if the algorithm of Definition 6.6 succeeds then it returns
a principal solution; if it fails then there is no solution.

Proof. If the algorithm succeeds we use Theorem 6.23. Otherwise, the algorithm gener-
ates an element of the form f(r1, . . . , rn) ?= f(r′1, . . . , r

′
n′) where n 6= n′, f(. . .) ?= g(. . .),

f(. . .) ?= [a]s, f(. . .) ?= a, [a]r =α a, [a]r =α b, a
?= b, a Pr such that Prv is inconsistent, or

π ·XS ?= r or r ?= π ·XS where XS ∈ fV (r). By arguments on syntax and size of syntax,
no solution to the reduced problem exists. It follows by Lemma 6.24 that no solution to
Pr exists.

7. Lambda-term syntax

We want to relate permissive nominal unification with higher-order pattern unifica-
tion as promised in the Introduction. In this section we recall the syntax and operational
semantics of the λ-calculus. It is convenient to match the variables of permissive nom-
inal terms with those of the λ-calculus. Therefore, when we define λ-terms’ syntax in
Definition 7.1, we use the same atoms and unknowns as we used in Definition 2.6; both
behave like ordinary variables (with capture-avoiding substitution). As in permissive
nominal terms we unify on the unknowns, but we do not care about the permission sets
so we will let X,Y, Z, . . . range over distinct unknowns (without superscripts).

Definition 7.1. Define λ-terms by:

g, h, . . . ::= a | X | f | λa.g | g′g

Here f ranges over term-formers, a ranges over atoms, and X ranges over unknowns.
g, h, k will range over λ-terms.

Definition 7.2. Define a permutation action by:

π·a ≡ π(a) π·X ≡ X π·f ≡ f π·(λa.g) ≡ λπ(a).(π·g) π·(g′g) ≡ (π·g′)(π·g)

Definition 7.3. Define free atoms by:

fa(a)={a} fa(X)=∅ fa(f)=∅ fa(λa.g)=fa(g)\{a} fa(g′g)=fa(g′)∪fa(g)

Definition 7.4. Define α-equivalence =α inductively by the rules in Figure 6.

29

D
RA

FT

(λ=αa)
a =α a

g =α h
(λ=αλaa)

λa.g =α λa.h

(b a) · g =α h b 6∈ fa(g)
(λ=αλab)

λa.g =α λb.h

(λ=αf)
f =α f

(λ=αX)
X =α X

g =α g
′ h =α h

′

(λ=αp)
gh =α g

′h′

Figure 6: α-equivalence on λ-terms.

It is not hard to prove that Definition 7.4 does indeed specify the usual α-equivalence
relation on λ-terms. Our definition is designed to match the definition of α-equivalence
on nominal terms (Definition 2.13). This makes later results easier to prove (for example
Theorem 8.12).

Lemma 7.5 to Proposition 7.12 mirror similar results for permissive nominal terms.
The proofs of Lemmas 7.5 to 7.7 are by induction on g.

Lemma 7.5. If π|fa(g) = π′|fa(g) then π · g =α π
′ · g.

Lemma 7.6. π · (π′ · g) ≡ (π◦π′) · g

Lemma 7.7. fa(π · g) = π · fa(g).

Lemma 7.8. g =α h implies π · g =α π · h.

Proof. By induction on the derivation of g =α h. We consider one case:
• The case (λ=αλab). By inductive hypothesis π · ((b a) · g) =α π · h. By Lemma 7.6,
π · ((b a) · g) ≡ (π◦(b a)) · g. It is a fact that π◦(b a) = (π(b) π(a))◦π, therefore
(π(b) π(a)) · (π · g) =α π · h, by Lemma 7.6. By Lemma 7.7, π(b) 6∈ fa(π · g). Using
(λ=αλab), we obtain λπ(a).π·g =α λπ(b).π·h. The result follows from Definition 7.2.

Lemma 7.9. If g =α h then fa(g) = fa(h).

Proof. By induction on the derivation of g =α h. We consider one case;
• The case (λ=αλab). Suppose λa.g =α λb.h using (λ=αλab), where b 6∈ fa(g). We

aim to show fa(λa.g) = fa(λb.h), or, fa(g) \ {a} = fa(h) \ {b}. As b 6∈ fa(g) we have
fa(g)\{a} = (b a) · fa(g)\{b}. Using Lemma 7.7, (b a) · fa(g)\{b} = fa((b a) ·g)\{b}.
By inductive hypothesis fa((b a) · g) = fa(s), as required.

Definition 7.10. Define a notion of size on λ-terms by:

size(a) = 0 size(X) = 0 size(f) = 0 size(g′g) = size(g′)+size(g)
size(λa.g) = 1+size(g)

Lemma 7.11. size(g) = size(π · g)

Proof. By induction on g.

30

D
RA

FT

Proposition 7.12. =α is transitive, reflexive, and symmetric.

Proof. See Appendix A. We use Lemmas 7.5, 7.6, 7.7, 7.8, 7.9 and 7.11.

Definition 7.13. Call a function σ from unknowns to λ-terms a (λ-calculus) substitu-
tion. σ will range over substitutions (and later so will ρ; Definition 9.17).

We will write [h/X] for the substitution which maps X to h and maps all other Y to
Y .

Definition 7.14. Define the capture-avoiding substitution action gσ on λ-terms by:

aσ ≡ a Xσ ≡ σ(X) fσ ≡ f (g′g)σ ≡ (g′σ)(gσ)

(λa.g)σ ≡ λa.(gσ) (a 6∈
⋃
{fa(σ(X)) | X ∈ fV (g)})

(λa.g)σ ≡ λb.(((b a)·g)σ) (a ∈
⋃
{fa(σ(X)) | X ∈ fV (g)})

In the final clause, ‘b fresh’ denotes a fixed but arbitrary choice of fresh b (so b 6∈ fa(g)
and b 6∈

⋃
{fa(σ(X))|X∈fV (g)}).

Definition 7.15. Define composition σ◦σ′ by: (σ◦σ′)(X) ≡ (σ(X))σ′. This mirrors the
definition for substitutions on permissive terms, given in Definition 3.7.

Lemma 7.16. gσσ′ =α g(σ◦σ′)

Proof. By induction on size(g).

We also need a substitution action on atoms so that we can talk aboutαβ-convertibility
— the distinction between unknowns and atoms is rather artificial here, but in the con-
text of relating to permissive nominal terms it is useful to maintain it:

Definition 7.17. Define a capture-avoiding substitution g[h/a] by:

a[h/a] ≡ h b[h/a] ≡ b X[h/a] ≡ X f[h/a] ≡ f

(g′g)[h/a] ≡ (g′[h/a])(g[h/a]) (λa.g)[h/a] ≡ λa.g
(λa.g)[h/a] ≡ λb.(((b a) · g)[h/a]) (b fresh)

In the final clause, ‘b fresh’ denotes a fixed but arbitrary choice of b such that b 6∈ fa(h)∪
fa(g).

Definition 7.18. Let αβ-equivalence =
αβ

be the least transitive, reflexive, symmetric
relation such that (λa.g)h =

αβ
g[h/a] and closed under the rules of Definition 7.4.

We define unification problems as usual and write ‘g ?= h’ for an equality considered
as part of a unification problem. σ solves a problem when gσ =

αβ
hσ for every g ?= h in

the problem, as usual.
We conclude with definions of pattern and pattern substitution [32, 31]. Recall that we

work in an untyped λ-term syntax.

31

D
RA

FT

Definition 7.19. Let φmap each unknownX to a natural number which we call its arity.
Define φ-patterns, a subset of λ-terms, by:

q, r, . . . ::= a | Xa1 . . . aφ(X) | fq1 . . . qn | λa.q

Call q a pattern when it is a φ-pattern for some φ. q, r, . . . will range over patterns.
Call σ a φ-pattern substitution when every σ(X) is a φ-pattern. Call σ a pattern

substitution when σ is a φ-pattern substitution for some φ.

So g is a pattern when there exists some φ such that everyX in g occurs asXa1 . . . aφ(X).
This is not quite a typing constraint, but it achieves part of what a typing system would
achieve; that within g, for eachX ,X is consistently applied to a list of atoms of the same
length. Note that the translation of Definition 8.3 below, produces terms of this form.

8. Translating nominal terms to lambda-term syntax

8.1. The translation, and its soundness
We define the translation from permissive nominal terms to λ-terms, and show

that it is sound in the sense that α-convertible permissive nominal terms map to α-
convertible λ-terms (Theorem 8.6). The translation involves a vector of atoms D; we
discuss where this comes from in Subsection 8.2.

Definition 8.1. Call a finite list of distinct atoms a vector. C,D range over vectors. Write
[a1, . . . , an] for the vector containing a1, . . . , an in that order.

Definition 8.2. Suppose A ⊆ A. Write C ∩ A for the vector of atoms in C that occur in
A, in order; thus [a1, a2, a3] ∩ {a1, a3, a5} = [a1, a3]. Write C ⊆ A when every atom in C
is in A. Write A ⊆ C when every atom in A is in C.

Definition 8.3. Translate a nominal term r to a λ-term JrKD by:

JaKD ≡ a Jπ ·XSKD ≡ XSπ(d1) . . . π(dn) ([d1, . . . , dn] = D ∩ S)

J[a]rKD ≡ λa.JrKD Jf(r1, . . . , rn)KD ≡ fJr1KD . . . JrnKD

Lemma 8.4. Jπ · rKD ≡ π · JrKD

Proof. By induction on r.

Lemma 8.5 is useful for the proof of Theorem 8.6:

Lemma 8.5. fa(JrKD) ⊆ fa(r).

Proof. By induction on r. We consider only one case:

32

D
RAFT

• The case π ·XS . We reason as follows:

fa(Jπ ·XSKD) = fa(XSπ(d1) . . . π(dn)) Definition 8.3
= fa(π(d1)) ∪ . . . ∪ fa(π(dn)) Definition 7.3
= π · (fa(d1) ∪ . . . ∪ fa(dn)) Fact
⊆ π · fa(XS) Definition 2.11
= fa(π ·XS) Lemma 2.17

The result follows.

Theorem 8.6 (Soundness). If r =α s then JrKD =α JsKD.

Proof. By induction on the size of r (Definition A.1). We reason by cases on the last rule
in the derivation of r =α s:
• The cases (=αa), (=αf) and (=α[]aa) are straightforward.
• The case (=αX). There are two cases:

• The case D∩S = []. Then Jπ ·XSKD = Jπ′ ·XSKD = XS . We use (λ=αX). The
result follows.

• The case D ∩ S = [d1, . . . , dn] and n ≥ 1. By assumption π|δ(X) = π′|δ(X).
Then π(di) = π′(di) for 1 ≤ i ≤ n and Jπ·XSKD ≡ Jπ′·XSKD ≡ XSπ(d1) . . . π(dn).
We use (λ=αp), (λ=αX), and (λ=αa). The result follows.

• The case (=α[]ab). By assumption (b a) · r =α s and b 6∈ fa(r). We choose fresh c
so c 6∈ fa(r) ∪ fa(s). By Lemma 2.18, (c a) · r =α (c b) · s. By inductive hypothesis
J(c a) · rKD =α J(c b) · sKD. Using (λ=αλaa), λc.J(c a) · rKD =α λc.J(c b) · sKD. By
Lemma 8.4, λc.((c a) · JrKD) =α λc.((c b) · JsKD). By Lemma 8.5, c 6∈ fa(JrKD) ∪
fa(JsKD). By (λ=αλab), λc.((c a) · JrKD) =α λa.JrKD and λc.((c b) · JsKD) =α λb.JsKD.
Using Proposition 7.12, λa.JrKD =α λb.JsKD. By Definition 8.3, J[a]rKD =α J[b]sKD,
as required.

8.2. Capturable atoms; injectivity and minimality
We investigate the converse to Theorem 8.6; if the translations of two terms are α-

convertible, then so are the two terms. This is injectivity (Theorem 8.12). The translation
JrKD (Definition 8.3) is parameterised by a vector D. Levy and Villaret introduced a
translation [29, Definition 2] (for nominal, not permissive nominal terms); they used
all the atoms in r. This is a safe choice, but we will also show that the smaller set
of capturable atoms in r (Definition 8.7) is consistent with injectivity — and that the
capturable atoms are the minimal such set (Theorem 8.14).

Definition 8.7. Define the capturable atoms of a term (with respect to a set of atoms)
captA(r) inductively by:

captA(a) = ∅ captA(π ·XS) = (nontriv(π) ∪A) ∩ S
captA([a]r) = captA∪{a}(r) captA(f(r1, . . . , rn)) =

⋃
1≤i≤n captA(ri)

Write capt∅(r) as capt(r).
33

D
RA

FT

For instance, if S = (A<∪{a})\{b}, then capt([a][b]XS) = {a} and capt((b a) ·XS) =
{a}. We now prove that capt respects α-equivalence:

Lemma 8.8. If a 6∈ fa(r) then captA(r) = captA∪{a}(r).

Proof. By induction on r.
• The cases b, f(r1, . . . , rn) and [a]r are straightforward.
• The case [b]r. If a 6∈ fa([b]r) then a 6∈ fa(r) by Definition 2.11. We then have:

captA([b]r) = captA∪{b}(r) Definition 8.7
= captA∪{b}∪{a}(r) Inductive hypothesis
= captA∪{a}([b]r) Definition 8.7

The result follows.
• The case π ·XS . If a 6∈ fa(π ·XS) then a 6∈ π ·S. By Definition 8.7, captA(π ·XS) =

(nontriv(π) ∪ A) ∩ S. Further, captA∪{a}(π · XS) = (nontriv(π) ∪ A ∪ {a}) ∩ S. If
π(a) = a then a 6∈ S. If π(a) 6= a then a ∈ nontriv(π), as required.

Lemma 8.9. If nontriv(π) ⊆ A then captA(π · r) = captA(r).

Proof. See Appendix A. We use Lemma 2.16.

Corollary 8.10. If a 6∈ fa(r) then captA([b]r) = captA([a](b a) · r).

Proof. See Appendix A. We use Lemmas 8.8, 8.9, and 2.17.

Capturable atoms is a canonical notion, in the sense that it is preserved byα-equivalence:

Lemma 8.11. If r =α s then captA(r) = captA(s).

Proof. By induction on the derivation of r =α s. We consider one case:
• The case of (=α[b]). Suppose b 6∈ fa(r), (b a) · r =α s and s ≡ [b](b a) · r. The result

follows by Corollary 8.10.

Provided that D is ‘large enough’, α-equivalence of translated terms implies α-
equivalence of the original terms:

Theorem 8.12 (Injectivity). Let D be a vector. Let r and s be nominal terms and let A,B ⊆ A
be finite. Suppose captA(r) ∪ captB(s) ⊆ D. Then

JrKD =α JsKD implies r =α s.

As a corollary, if capt(r) ∪ capt(s) ⊆ D and JrKD =α JsKD then r =α s and captA(r) =
captA(s) for all A.

Proof. For the first part, we work by induction on the size of r (Definition A.1), reasoning
by cases on the last rule in the derivation of JrKD =α JsKD:
• The cases (λ=αa) and (λ=αλaa). Easy.

34

D
RA

FT

• The case (λ=αλab). Suppose (b a) · JrKD =α JsKD, b 6∈ fa(JrKD) and captA([a]r) ∪
captB([b]s) ⊆ D.
We choose fresh c (so c 6∈ fa(r) ∪ fa(s) and c 6∈ fa(JrKD) ∪ fa(JsKD)). By Lemma 7.5,
(c a) · JrKD =α (c b) · JsKD. By Lemma 8.4:

J(c a) · rKD =α J(c b) · sKD.

By Corollary 8.10 and Definition 8.7:

captA∪{c}((c a) · r) ∪ captB∪{c}((c b) · s) ⊆ D.

By inductive hypothesis (c a)·r =α (c b)·s, and using (=α[]ab), and Proposition 7.12,
[a]r =α [b]s as required.

• The case (λ=αapp). From Definition 8.3, there are two possibilities:
• The case f(r1, . . . , rn) and f(s1, . . . , sn) and fJr1KD . . . JrnKD =α fJs1KD . . . JsnKD.

Then JriKD =α JsiKD for 1 ≤ i ≤ n. By inductive hypothesis ri =α si for
1 ≤ i ≤ n. The result follows from (=αf).

• The case π ·XS and π′ ·XS andXSπ(d1) . . . π(dn) =α X
Sπ′(d1) . . . π′(dn) where

[d1, . . . , dn] = D ∩ S.
Then π(di) =α π

′(di) for 1 ≤ i ≤ n, and so π|D∩S = π′|D∩S . By assumption,
capt(π ·XS) ⊆ D, and by definition, π|S = π′|S . We conclude with (=αX).

• The case (λ=αX). From the form of the translation it must be that r = π ·XS and
s = π′ · XS and nontriv(π) ∩ S = ∅ = nontriv(π′) ∩ S. The result follows from
(=αX).

The corollary follows from the first part, and by Lemma 8.11.

Lemma 8.13. a ∈ captA(r) implies XS ∈ fV (r) exists such that a ∈ S.

Proof. See Appendix A.

In Theorem 8.12 we used a notion of a ‘large enough’ vector D, based on capturable
atoms. Theorem 8.14 shows how this bound is precise:

Theorem 8.14 (Minimality). If capt(r) 6⊆ D then there exists some s such that r 6=α s and
JrKD =α JsKD.

Proof. Suppose a ∈ capt(r) and a 6∈ D. By Lemma 8.13 XS ∈ fV (r) exists such that
a ∈ S. We choose fresh c (so c 6∈ fa(r) ∪ D) and take s ≡ r[XS :=(c a) · XS]. It is a
fact that XS 6=α (c a) · XS whilst JXSKD =α J(c a) · XSKD. An easy calculation shows
r 6=α r[XS :=(c a) ·XS] and JrKD =α Jr[XS :=(c a) ·XS]KD.

9. Translating substitutions; relating solutions of nominal and pattern unification
problems

9.1. Translating substitutions
We extend the translation to substitutions. Our main result is Theorem 9.3: we can

read this as a compositionality result for permissive nominal substitutions acting on
terms with respect to the translation. Given the compositionality result it is easy to

35

D
RA

FT

prove that the translation also preserves the natural instantiation ordering of solutions
to unification problems (Corollary 9.5).

Translating substitutions introduces a problem: θ may solve Pr but in substituting
it may introduce new capturable atoms (consider θ = [XS :=[c]ZS] solving {XS ?= XS},
where c ∈ S). This motivates introducing a second vector, to account for the capturable
atoms ‘after’ the substitution. Accordingly, we will introduce another vector E that
contains at least the capturable atoms of θ.

Definition 9.1. Define JθKED by:

JθKED(XS) = λd1. . . . λdn.Jθ(XS)KE where [d1, . . . , dn] = D ∩ S.

Lemma 9.2 is useful in the proof of Theorem 9.3:

Lemma 9.2. If nontriv(π) ∩ fa(g) ⊆ {d1, . . . , dn} then

(λd1. . . . λdn.g)π(d1) . . . π(dn) =
αβ
π · g.

Proof. By induction on g. We consider one case:
• The case λa.g. Choose a′ fresh (so a′ does not appear in g, {d1, . . . , dn}, or nontriv(π)).

h =
αβ

(λa.g)[π(d1)/d1] . . . [π(dn)/dn] Definition 7.18
=α (λa′.(a′ a) · g)[π(d1)/d1] . . . [π(dn)/dn] Definition 7.4
≡ λa′.((a′ a) · g)[π(d1)/d1] . . . [π(dn)/dn]) Definition 7.17, a′ fresh

=
αβ
λa′.(π · ((a′ a) · g)) Inductive hypothesis

≡ π · λa′.((a′ a) · g) Definition 7.2
=α π · λa.g Definition 7.4

Theorem 9.3 is a compositionality result for permissive nominal substitutions acting
on terms with respect to the translation:

Theorem 9.3. If capt(r) ⊆ D then JrθKE =
αβ

JrKDJθKED.

Proof. By induction on r.
• The cases a and f(r1, . . . , rn) are routine.
• The case π ·XS . Let d1, . . . , dn be D∩S and JθKED(XS) = λd1. . . . λdn.Jθ(XS)KE by

Definition 9.1. Then:

J(π ·XS)θKE ≡ Jπ · θ(XS)KE Definition 3.2
≡ π · Jθ(XS)KE Lemma 8.4

=
αβ

(λd1. . . . λdn.Jθ(XS)KE)π(d1) . . . π(dn) Lemma 9.2
≡ (XSπ(d1) . . . π(dn))JθKED Definition 9.1
≡ Jπ ·XSKDJθKED Definition 8.3

The use of Lemma 9.2 above is valid, because: By assumption capt(π ·XS) ⊆ D. By
Definition 8.7 capt(π·XS) = nontriv(π)∩S, so nontriv(π)∩S ⊆ D. By assumption in
Definition 3.1, fa(θ(XS)) ⊆ S. It follows from Definition 8.3 that fa(Jθ(XS)KE) ⊆ S,
and so that nontriv(π) ∩ fa(Jθ(XS)KE) ⊆ D.
The result follows.

36

D
RA

FT

• The case [a]r. Choose b fresh, so b 6∈ fa(Jθ(XS)KED) for every XS ∈ fV (r) and
b 6∈ fa(r). Then:

J([a]r)θKE =α J([b]((b a) · r))θKE Definition 2.13, Theorem 8.6, Lemma 3.6
≡ λb.(J((b a) · r)θ)KE Definitions 3.2 and 8.3

=
αβ
λb.((J(b a) · rKD)JθKED) Inductive hypothesis

≡ (λb.J(b a) · rKD)JθKED Definition 7.17, b fresh
≡ J[b]((b a) · r)KDJθKED Definition 8.3
=α J[a]rKDJθKED Definition 2.13, Theorem 8.6, Lemma 3.6

The result follows.

Recall the instantiation ordering θ1 ≤ θ2 from Definition 6.12. Similarly:

Definition 9.4. Write σ1 ≤ σ2 when there exists some σ′ such that Xσ2 =
αβ
X(σ1 ◦ σ′),

for any X . Call ≤ the instantiation ordering.

We can leverage Theorem 9.3 to prove a corollary, describing a sense in which the
instantiation ordering θ1 ≤ θ2 of Definition 6.12 translates to the instantiation ordering
of Definition 9.4:

Corollary 9.5. Suppose
⋃
XS capt(θ2(XS)) ⊆ E.

If θ1 ≤ θ2 then Jθ1KED ≤ Jθ2KED.

Proof. Suppose θ1 ≤ θ2. By definition (Definition 6.12) there exists some θ′ such that
XSθ1 =α X

S(θ2 ◦ θ′) always. We reason as follows, for any unknown XS :

JXSKDJθ2KED =
αβ

JXSθ2KE Theorem 9.3
=α JXS(θ1 ◦ θ′)KE Theorem 8.6
≡ J(XSθ1)θ′)KE Lemma 3.8

=
αβ

JXSθ1KEJθ′KEE Theorem 9.3, capt(θ1(XS)) ⊆ E
=

αβ
(JXSKDJθ1KED)Jθ′KEE Theorem 9.3

≡ JXSKD(Jθ1KED ◦Jθ
′KEE) Lemma 7.16

The result follows.

In Corollary 9.5, the precondition
⋃
XS capt(θ2(XS)) ⊆ E is necessary to prevent

θ2 from introducing infinitely many capturable atoms. The ‘complexity’ of θ1 is uncon-
strained. In practice it is likely that we will care about a particular finite set of unknowns
V (for example, fV (Pr) for some Pr), and the precondition can be correspondingly re-
fined to consider just XS ∈ V .

9.2. Translating permissive nominal unification to pattern unification; soundness, weak com-
pleteness

The main result of this subsection is Theorem 9.16.
It says that if D and E are ‘large enough’, then θ solves Pr if and only if JθKED solves

JPrKD. We call this ‘soundness and weak completeness’, to distinguish from a stronger
completeness result we prove in Subsection 9.3.

37

D
RAFT

Definition 9.6. An equation is a pair r ?= s. A unification problem Pr is a finite set of
equations. A solution to Pr is a θ such that rθ=αsθ for all r ?=s ∈ Pr.

Definition 9.7. If D = [d1, . . . , dn] and Pr = {r1
?= s1, . . .} then define JPrKD by:

JPrKD =
{
λd1. . . . λdn.JrKD

?= λd1. . . . λdn.JsKD | r
?= s ∈ Pr

}
For example, if Pr = {XS ?= f(Y S , a, ZS)} where S = A< ∪ {a, b}, then JPrK[a] =

{λa.(XSa) ?= λa.(f (Y Sa) a (ZSa))}.
Definition 9.8 is a technical definition, and the results following it are technical lem-

mas required for Lemma 9.11, which is a key result for Lemma 9.13, which is itself
needed for Theorem 9.16.

Definition 9.8. Define uncapt(r) by:

uncapt(a) = ∅
uncapt(π ·XS) = S \ nontriv(π)

uncapt([a]r) = uncapt(r) \ {a}
uncapt(f(r1, . . . , rn)) = uncapt(r1) ∪ · · · ∪ uncapt(rn)

uncapt(r) is quite interesting; technically, it came about as the ‘right definition’ to
make Lemmas 9.10, 9.11, and 9.12 work.7 Intuitively, it may be useful to think of
uncapt(r) as collecting those atoms that are not necessarily in capt(r), but which could
feature in capt([a]r) for some a.

For example, if a ∈ S then a ∈ uncapt(XS) but

a 6∈ uncapt(a), a 6∈ uncapt([b][a]XS), and a 6∈ uncapt((b a) ·XS).

Lemma 9.9. If A ⊆ B then captA(r) ⊆ captB(r).
As a corollary, captA(r) ⊆ captA([a]r).

Proof. By induction on r. As captA([a]r) = captA∪{a}(r), the corollary follows.

Lemma 9.10. Suppose a ∈ A. Then if a ∈ uncapt(r) then a ∈ captA(r).
As a corollary, a ∈ uncapt(r) implies a ∈ capt([a]r).

Proof. By induction on r.
• The cases a and f(r1, . . . , rn) are straightforward.
• The case [a]r. a ∈ uncapt([a]r) is impossible.
• The case [b]r. Suppose a ∈ uncapt([b]r). By Definition 9.8 a ∈ uncapt(r). By

inductive hypothesis a ∈ captA(r). By Lemma 9.9 a ∈ captA([b]r) as required.
• The case π ·XS . Suppose a ∈ uncapt(π ·XS), so a ∈ S \nontriv(π). By assumption
a ∈ A so a ∈ (nontriv(π) ∪A) ∩ S = captA(π ·XS).

7Thanks to an anonymous referee for spotting the error in a previous proof.
38

D
RA

FT

Lemma 9.11. captA(π · r) ⊆ ((nontriv(π) ∪A) ∩ uncapt(r)) ∪ capt(r).

Proof. See Appendix A. We use Lemmas 9.9 and 9.10.

Lemma 9.12. uncapt(r) ⊆ fa(r).

Proof. By a routine induction on r using Definitions 2.11 and 9.8.

Lemma 9.13. captA(rθ) ⊆ captA(r) ∪
⋃
XS∈fV (r) capt(θ(XS)).

Proof. By induction on r:
• The cases a and f(r1, . . . , rn). Straightforward.
• The case [a]r. We reason as follows:

captA([a](rθ)) = captA∪{a}(rθ) Definition 8.7
⊆ captA∪{a}(r) ∪

⋃
XS∈fV (r) capt(θ(XS)) Ind. hyp.

= captA([a]r) ∪
⋃
XS∈fV (r) capt(θ(XS)) Definition 8.7

The result follows.
• The case π ·XS . As (π ·XS)θ ≡ π · θ(XS), we reason as follows:

captA(π · θ(XS)) ⊆ ((nontriv(π) ∪A) ∩ uncapt(θ(XS)))
∪capt(θ(XS)) Lemma 9.11

⊆ ((nontriv(π) ∪A) ∩ S) ∪ capt(θ(XS)) Lemma 9.12
= captA(π ·XS) ∪ capt(θ(XS)) Definition 8.7

The result follows.

Remark 9.14. capt(rθ) ⊆
⋃

fV (r) capt(θ(XS)) is not true in general. For example if a ∈ S
and b ∈ S then capt([a]XS) = {a} and capt([XS :=[b]XS]) = {b}, and capt(([a]XS))θ =
{a, b} 6⊆ {b}.

Lemma 9.15. Suppose capt(Pr) ⊆ D and capt(Prθ) ⊆ E. Then θ solves Pr if and only if
JθKED solves JPrKD.

Proof. We reason as follows, where D = [d1, . . . , dn]:

rθ =α sθ ⇔ JrθKE =α JsθKE Theorems 8.6 and 8.12
⇔ JrKDJθKE

D =αβ JsKDJθKE
D Theorem 9.3

⇔ λd1. . . . λdn.JrKDJθKE
D =αβ λd1. . . . λdn.JsKDJθKE

D fact of λ-terms
⇔ (λd1. . . . λdn.JrKD)JθKE

D =αβ (λd1. . . . λdn.JsKD)JθKE
D no atom of D free in JθKE

D

If D and E are ‘large enough’, then θ solves Pr if and only if the translation JθKED
solves the translation JPrKD:

Theorem 9.16 (Soundness and weak completeness). Suppose

capt(Pr) ⊆ D capt(θ(XS)) ⊆ E for all XS ∈ fV (Pr), and D ⊆ E.

Then θ solves Pr if and only if JθKED solves JPrKD.
39

D
RA

FT

Proof. Suppose capt(Pr) ⊆ D, capt(θ(XS)) ⊆ E for all XS ∈ fV (Pr), and D ⊆ E.
Then:

capt(Prθ) ⊆ capt(Pr) ∪
⋃
XS∈fV (Pr) capt(θ(XS)) Lemma 9.13

⊆ D ∪
⋃
XS∈fV (Pr) capt(θ(XS)) capt(Pr) ⊆ D

⊆ D ∪ E capt(θ(XS)) ⊆ E
⊆ E D ⊆ E

By Lemma 9.15, θ solves Pr if and only if JθKED solves JPrKD.

For example, Pr = {XS ?= f(Y S , a, ZS)} where S = A< ∪ {a, b} translates to
JPrK[a] = {λa.(XS a) = λa.(f (Y S a) a (ZS a))}.

The solution [XS :=f(WS , a, b), Y S :=WS , ZS :=b] with S = A< ∪ {a, b} translates to
JθK[a,b]

[a] = [XS :=λa.(f (WS a b) a b), Y S :=λa.(WS a b), ZS :=λa.b].

9.3. Strong Completeness
The main result of this subsection is Theorem 9.30. This strengthens the complete-

ness result of Theorem 9.16, in a certain sense, by expressing that a class of σ solving
JPrKD all originate from θ solving Pr, in a suitable formal sense.

Definition 9.17. Call a bijection on unknowns a renaming. ρwill range over renamings.
Each X is also a λ-term (Definition 7.1), so each ρ is also a substitution (Definition 7.13).

Lemma 9.18. fa(g) = fa(gρ)

Proof. By induction on g.

Lemma 9.19. g =α h if and only if gρ =α hρ.

Proof. The left to right implication is by induction on the derivation of g =α h; right to
left is by induction on the derivation of gρ =α hρ. We consider one case:
• The case (λ=αλab). For the left to right implication, suppose (b a) · g =α h and
b 6∈ fa(g). By inductive hypothesis ((b a) · g)ρ =α hρ. By Lemma 9.18, b 6∈ fa(gρ).
It is a fact that ((b a) · g)ρ ≡ (b a) · (gρ). It follows that (b a) · (gρ) =α hρ. Using
(λ=αλab), λa.(gρ) =α λb.(hρ). The result follows.
For the right to left implication, suppose (b a) · (gρ) =α hρ and b 6∈ fa(gρ). It is a fact
that (b a) · (gρ) ≡ ((b a) · g)ρ. It follows by inductive hypothesis that (b a) · g =α h.
By Lemma 9.18, b 6∈ fa(g). Using (λ=αλab), λa.g =α λb.h as required.

Definition 9.20. Define the substitution π · σ by: (π · σ)(X) ≡ π · σ(X).

Note that π·σ is a substitution. g(π·σ) is not a shorthand for π·(gσ). g(π·σ) =α π·(gσ)
does not hold in general; for example: a ≡ a((b a) · id) 6≡ (b a) · (a id). However:

Lemma 9.21. If nontriv(π) ∩ fa(g) = ∅ then g(π · σ) =α π · (gσ).

Proof. By a routine induction on g.

40

D
RA

FT

Lemma 9.22. σ solves JPrKD if and only if σ◦ρ does.
Suppose nontriv(π) ∩ (fa(r) ∪ fa(s)) = ∅ for every r ?= s ∈ Pr. Then σ solves JPrKD if

and only if π · σ does.

Proof. For the first part, we have two cases:
• The case σ solves JPrKD implies σ◦ρ solves JPrKD. Suppose g ?= h ∈ JPrKD and
σ solves JPrKD. Then gσ =α hσ. By Lemma 9.19, gσρ =α hσρ. By Lemma 7.16,
g(σ◦ρ) =α h(σ◦ρ), as required.

• The case σ◦ρ solves JPrKD implies σ solves JPrKD. Suppose g ?= h ∈ JPrKD and
σ◦ρ solves JPrKD. Then g(σ◦ρ) =α h(σ◦ρ). By Lemma 7.16, gσρ =α hσρ. By
Lemma 9.19, gσ =α hσ, as required.

For the second part, suppose nontriv(π) ∩ (fa(r) ∪ fa(s)) = ∅ for every r ?= s ∈ Pr and
D = [d1, . . . , dn]. Then JPrKD = {λd1. . . . λdn.JrKD

?= λd1. . . . λdn.JsKD | r
?= s ∈ Pr}. By

Lemma 8.4, nontriv(π)∩(fa(JrKD)∪fa(JsKD)) = ∅. The result follows from Lemma 9.21,
and using Proposition 7.12 and Lemma 7.8.

Remark 9.23. Lemma 9.22 expresses an intuition that ‘names of atoms and unknowns
on the right in a solution, do not matter’, which also underlies the π and ρ in Theo-
rem 9.30. ρ is the price we pay for using the same unknowns in Definitions 7.1 and 2.6:
This design decision makes Definition 8.3 compact, but it causes technical problems in
Lemma 9.29, because σ(X) can introduce new unknowns over whose permission sets
(back in the nominal world) we have no control. ρ lets us rename those new unknowns
as convenient. As for π, we discuss it below.

Another design decision is to work with an untyped λ-terms. This simplifies our
presentation and makes our results slightly more powerful (because they apply to more
substitutions), but we cannot be too liberal: Suppose σ solves JPrKD. Examining Defini-
tion 8.3, if X occurs in JPrKD then it is applied to a number of atoms equal to the length
of D ∩ S. So, we will only be interested in σ that respect this fragment of typability (V
will be fV (Pr)):

Definition 9.24. Let V be a finite set of unknowns. Call σ D-consistent on V when for
every X ∈ V , σ(X) =α λa1. . . . λan.q where n is the length of D∩S. (So σ(X) starts with
‘at least’ length-D ∩ S-many λ-abstractions.)

Call σ strictly D-consistent when also, for every X ∈ V , fa(σ(X)) ∩D = [].

Remark 9.25. Strictness is motivated by the following examples: Take D = [a].
Take Pr = {XS ?= f([a]Y S , Y S)}with S = A<. Then the problem

JPrKD = {λa.(XS a) ?= λa.(f (λa.(Y Sa)) (Y Sa))}
has the solution σ = [XS :=λc.(f (λc.a) a), Y S :=λc.a].

Now (σ◦ρ)(Y S) =α JθKED(Y S) is impossible for any ρ, since λc.a =α λa.Jθ(Y S)KE is
impossible.

Take Pr = {XS ?= f([a]Y T , Y T)}with S = A< and T = A< \ {a}. Then the problem

JPrKD = {λa.(XS a) ?= λa.(f (λa.Y T)Y T)}
has the solution σ = [XS :=λc.(f (λc.a) a), Y T :=a].

41

D
RAFT

Now (σ◦ρ)(Y T) =α JθKED(Y T) is impossible, since a ∈ fa(a) whereas
a 6∈ fa(Jθ(Y T)KE) by Lemma 8.5.
The a in σ(Y T) for the two σ considered above, has nothing to do with the a inD. We

can regard this as an unfortunate ‘name-clash’ which Lemma 9.22 allows us to eliminate
with a permutation π.

More on this in Theorem 9.30. We continue with the proofs:

Definition 9.26. Define the arguments of unknowns in a pattern q by:

args(a) = ∅ args(X) = ∅ args(Xa1 . . . an) = {a1, . . . , an}

args(fq1 . . . qn) =
⋃

1≤i≤n

args(qi) args(λa.q) = args(q)

q =α r does not imply args(q) = args(r). This is by design.

Definition 9.27. Suppose q is a φ-pattern and args(q) ⊆ E.
Define a nominal term q-E by:

a-E ≡ a (Xb1 . . . bφ(X))-E ≡ π·XS

(λa.q)-E ≡ [a]q-E (fq1 . . . qn)-E ≡ f(q1
-E , . . . , qn

-E)

Here, for each E and X , π is a fixed but arbitrary choice of permutation of the atoms in
E, mapping the ith element of E ∩ S (Definition 8.2) to bi for 1 ≤ i ≤ φ(X).

Lemma 9.28. args(q) ⊆ E implies Jq-EKE ≡ q.

Proof. By induction on q.

Lemma 9.29. Suppose V is a finite set of unknowns and σ is a φ-pattern substitution, strictly
D-consistent on V .

Then there exist ρ, θ, and E, such that D ⊆ E,
⋃
X∈V capt(θ(X)) ⊆ E, and (σ◦ρ)(X) =α

JθKED(X) for every X ∈ V .

Proof. Take any E = [e1, ..., ep] which includes all atoms in D and in {σ(X) | X ∈ V}.
Define V ′ =

⋃
X∈V fV (σ(X)) (‘the unknowns in σ(X) for X ∈ V’). For each Y ∈ V ′

choose a fresh Y ′ such that the length of E ∩ fa(Y ′) is equal to φ(Y). We do this injec-
tively, so that for distinct Y,Z ∈ V ′, Y ′ and Z ′ are also distinct. Let ρ be any renaming
such that ρ(Y) ≡ Y ′ for all Y ∈ V ′.

By assumption σ(X) =α λa1. . . . λan.q for a φ-pattern q, where [a1, . . . , an] = D ∩ S.
Take θ(X) ≡ (qρ)-E .

We can verify that
⋃
X∈V capt(θ(X)) ⊆ E. We then reason as follows:

JθKED(X) ≡ λa1. . . . λan.J(qρ)-EKE Definition 9.1
≡ λa1. . . . λan.(qρ) Lemma 9.28
≡ (λa1. . . . λan.q)ρ Fact of λ-terms
=α (σ◦ρ)(X) By construction

42

D
RA

FT

Theorem 9.30 (Strong completeness). Suppose capt(Pr) ⊆ D.
For σ strictly D-consistent on fV (Pr) solving JPrKD there are ρ, θ, and E, such that

(σ◦ρ)(X) =α JθKED(X) for all X ∈ fV (Pr) and θ solves Pr.

For σ D-consistent on fV (Pr) solving JPrKD there are π, ρ, θ, and E, such that

π·(σ◦ρ)(X) =α JθKED(X) for all X ∈ fV (Pr) and θ solves Pr.

Proof. By Lemma 9.29, there are ρ, θ, and E, such that (σ◦ρ)(X) =α JθKED(X) for all
X ∈ fV (Pr), D⊆E and

⋃
X∈fV (Pr) capt(θ(X)) ⊆ E. capt(Pr) ⊆ D and D ⊆ E, so

capt(Pr) ⊆ E. By Theorem 9.16, θ solves Pr.
For the second part, write D = [d1, . . . , dn], choose D′ = [d′1, . . . , d

′
n] fresh (so d′i is

not in D, Pr, or σ(X) for any X ∈ fV (Pr)), and take π = (d′1 d1) . . . (d′n dn). π · σ is
strictly D-consistent and the result follows from the first part and Lemma 9.22.

10. Conclusions

In this paper, we have presented a syntax which slightly generalises nominal terms
and obtains significantly enhanced properties. We gain ‘always fresh’ and ‘always re-
name’ properties (Corollaries 2.14 and 2.15) which are present in first- and higher-order
syntax, absent in nominal terms, and regained in permissive nominal terms.

We do not claim a telling difference in expressivity in practice between nominal and
permissive nominal terms. It may indeed be that permissive nominal terms can express
some things that nominal terms cannot8 but expressivity is not our main motivation in
this paper. The issues which motivate us are with the properties of these syntaxes. As
we have seen in this paper, a significant new body of mathematics follows from these
changes, which at first seem so innocuous. It does not stop there; the interested reader
can find more in [15].

Permissive nominal terms do not obsolete nominal terms. To discuss ‘an arbitrary
term’, a nominal terms unknown Ẋ may be more directly useful than a permissive
nominal terms unknown XA<

(which means ‘an arbitrary term, mentioning atoms in
A<’).

We have leveraged the difference between nominal terms and permissive nominal
terms to obtain a new unification algorithm which is more efficient in the sense that it
is based just on substitutions, and in that sense is also more like the notion of solution
familiar from first- and higher-order syntax. Freshness problems are solved ‘all in one
go’ by a distinct algorithm. We have interpreted nominal unification as a subsystem of
permissive nominal unification (Section 4).

One nice way to view this interpretation is that A< plays the role of ‘the atoms we
had so far’ and A> that of ‘the atoms we will generate fresh in the future’. Finally,
we have exhibited permissive nominal unification as equivalent to higher-order pattern
unification.

8Permission sets may be larger than A< as well as smaller, whereas intuitively in nominal terms freshness
contexts can only make permission sets smaller.

43

D
RA

FT

10.1. Related work
Infinite sets of atoms

Permissive nominal terms are based on the idea of infinite and co-infinite sets of
atoms S. This is new, but it emerges from a literature rich in precedents. As we noted in
Remark 2.22, infinite and co-infinite sets break with the standard nominal sets semantics
from [25], which does not admit them because they do not have finite support. This is
however not a serious mathematical problem: the idea of relaxing the ‘finite support’
property of nominal sets to infinite generalisations is natural.

As far as we know this was first discussed in [11], where the second author proposed
to identify ‘small’ sets of atoms not with cardinality but with well-orderability of the
atoms in the set — so a set of atoms is small when it can be assigned a cardinal size, and
large when it cannot be assigned a cardinal size (internally, within the model) — but
we do not commit ourselves to how large those cardinals can get, and in particular they
could be infinite. See [13] for a more extended treatment of the same ideas.

Pitts referred to the possibility of using nominal sets with infinite support in [37],
in order to obtain a complete semantics for nominal logic. This idea was taken up by
Cheney in [6]. Thus, in [6] ‘small’ sets of atoms are identified as elements of a support
ideal (Definition 4.1 of [6]), which are similar in spirit to the set of permission sets from
Definition 2.2. In Definition 2.2 we give a concrete set of permission sets, but in a foot-
note to that definition we also identify some reasonable abstract conditions for the set of
permission sets to satisfy such that the proofs in this paper still work. These conditions
are extremely mild; the structure actually required of permission sets is much weaker
than that provided by Definition 2.2.

Namespaces
Since this paper was written, the second author has prepared a manuscript treating

permissive nominal algebra [15] (a precursor is [22]). There, the set of all atoms is taken to
be uncountable and permission sets are taken to be all countably infinite sets of atoms.
This setting is sufficiently general to accommodate many different notions of permission
sets as subsystems. In particular the permission sets of this paper feature as a ‘names-
pace’ identified by A<; thus, the ideas in this paper slot quite nicely into a more abstract
setting.

‘Free atoms of’ as distinct from ‘support of the denotation of’
It may be useful to note some work to which this paper is not related. One nice

aspect of permissive nominal terms is that they give us a notion of ‘free atoms of a
term’ fa(r). The judgement ∇ ` a#r of nominal terms corresponds to the judgement
a 6∈ fa(r) of permissive nominal terms (see Lemma 4.8) and both correspond to the
informal judgement ‘a is not free in r’.

Nominal sets have a native notion of semantic freshness; a#semr means ‘a is not in
the support of the denotation of r’. Semantic freshness is a distinct concept. The reader
should not confuse semantic freshness with the intensional judgement ‘free atoms of’
used in this paper.

Semantic freshness may be expressed using ‘free atoms of’ and equality [17, 21, 15].

44

D
RA

FT

Patterns
Patterns emerged by studying Skolemisation of unification problems [32]; they proved

useful in the unification of higher-order abstract syntax terms [31].
Cheney proposed a two-stage translation of higher-order pattern unification to nom-

inal unification [4], first by exhibiting a translation of higher-order pattern unification
to nominal pattern unification (where nominal patterns are a variant of nominal terms,
with a concretion operator, where unknowns have empty support), followed by a trans-
lation between nominal pattern unification and nominal unification.

Levy and Villaret related nominal unifiability with higher-order pattern unifiabil-
ity in [29]. Our treatment translates solutions as well, handles a more general class of
higher-order patterns than considered in [29], and we prove our translation complete
(Theorem 9.30) and optimal (Subsection 8.2).

Note that translating solutions really matters: it might have been, for example, that
higher-order pattern unification and permissive nominal unification have the same no-
tion of unifiability — but very different notions of solution and sets of solutions. For
comparison, the λ-calculus and combinators express similar notions of computability,
but have very different notions of reduction and computation.

The version of higher-order pattern unification which we examine is more general
than usual, since we do not type our λ-terms. We show how to retain enough of the
properties of typing to avoid ‘silly’ problems. For example, we do not consider untyped
higher-order pattern unification problems like X =

αβ
λa.(Xa), because this cannot be

expressed as a unification of two φ-patterns for any φ (Definition 7.19) — we impose
a structural condition on our patterns that X should be applied to a consistent, fixed
number of arguments.

We hypothesise that the results in this paper would work in a typed setting; the
conditions which our proofs depend on to work are just structural ones, which would
also be guaranteed by types. We have not investigated the effects of η-conversion; this
is future work.

The broader literature
Hamana’s β0 unification of λ-terms with holes adds a capturing substitution [26].

Level 2 variables (which are instantiated) are annotated with level 1 variable symbols
that may appear in them; permissive nominal terms move in this direction in the sense
that permission sets also describe which level 1 variable symbols (we call them atoms
in this paper) may appear in them, though with our permission sets there are infinitely
many that may, and infinitely many that may not. Another significant difference is
that the treatment of α-equivalence in Hamana’s system is not nominal (not based on
permutations) and unlike our systems, Hamana’s does not have most general unifiers.

Similarly, Qu-Prolog [34] adds level 2 variables, but does not manage α-conversion
in nominal style, and, for better or for worse, the system is more ambitious in what it
expresses, and thus loses mathematical properties (unification is semi-decidable, most
general unifiers need not exist).

10.2. Future work
We propose permissive nominal terms as a syntax for designing logics and λ-calculi

in the spirit of nominal terms.

45

D
RA

FT

A first implementation of permissive nominal unification has been made [33] by the
third author.

We have begun to apply permissive nominal terms to construct novel logics and
λ-calculi, taking advantage of their properties to simplify the theory. It is simply very
useful to reason on terms (without a freshness context), to have an inexhaustible supply
of fresh names, and to be able to quotient by α-equivalence. We note in particular the
papers [24, 23, 19, 18, 20], in which we have struggled with the theory of α-equivalence
given to us by nominal terms; these might benefit from the use of permissive nominal
terms.

Permissive nominal terms syntax has two levels of variable, atoms a and unknowns
X . There is no reason to stop there; we have already considered syntaxes with more than
two levels of variable, for example [14, 16]. Again, we had difficulty with α-conversion
and fresh atoms. It would be very interesting to revisit this material armed with the
permissive ideas of this paper.

Finally, it may be possible to extend the techniques of this paper to biject full higher-
order unification with an enrichment of (permissive) nominal unification.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, Great Britain, 1998.

[2] Christophe Calvès. A Haskell Nominal Toolkit. In 2nd International Workshop on Theory
and Applications of Abstraction, Substitution and Naming (TAASN 2009), 2009. source code
available online at: http://www.dcs.kcl.ac.uk/pg/calves/hnt/.

[3] James Cheney. Nominal Logic Programming. PhD thesis, Cornell University, August 2004.
[4] James Cheney. Relating nominal and higher-order pattern unification. In Proceedings of

the 19th International Workshop on Unification (UNIF 2005), pages 104–119, 2005.
[5] James Cheney. Scrap your nameplate: (functional pearl). SIGPLAN Notices, 40(9):180–

191, 2005.
[6] James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Sym-

bolic Logic, 71:299–320, 2006.
[7] James Cheney and Christian Urban. Alpha-prolog: A logic programming language with

names, binding and alpha-equivalence. In Bart Demoen and Vladimir Lifschitz, editors,
Proceedings of the 20th International Conference on Logic Programming (ICLP 2004), number
3132 in Lecture Notes in Computer Science, pages 269–283. Springer, 2004.

[8] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive Nominal Terms
and their Unification. Technical Report HW-MACS-TR-0062, Heriot-Watt University,
2009. Available online at gabbay.org.uk/papers/perntu-tr.pdf.

[9] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Binding logic: Proofs and mod-
els. In LPAR ’02: Proceedings of the 9th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, pages 130–144, London, UK, 2002. Springer.

[10] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting (journal version). In-
formation and Computation, 205(6):917–965, 2007.

[11] Murdoch J. Gabbay. FM-HOL, a higher-order theory of names. In F. Kamareddine,
editor, 35 Years of Automath, 2002.

[12] Murdoch J. Gabbay. A NEW calculus of contexts. In PPDP ’05: Proc. of the 7th ACM
SIGPLAN symposium on Principles and Practice of Declarative Programming, pages 94–105.
ACM, 2005.

46

http://www.dcs.kcl.ac.uk/pg/calves/hnt/
http://www.gabbay.org.uk/papers.html#perntu-tr
http://www.gabbay.org.uk/papers.html#perntu-tr
http://www.gabbay.org.uk/papers/perntu-tr.pdf
http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#fmhotn
http://www.gabbay.org.uk/papers.html#newcc

D
RA

FT

[13] Murdoch J. Gabbay. A General Mathematics of Names. Information and Computation,
205(7):982–1011, July 2007.

[14] Murdoch J. Gabbay. Hierarchical Nominal Terms and Their Theory of Rewriting. Elec-
tronic Notes in Theoretical Computer Science, 174(5):37–52, 2007.

[15] Murdoch J. Gabbay. Permissive nominal algebra and semantic nominal unknowns: a
new universal algebra for nominal techniques. Manuscript, 2010.

[16] Murdoch J. Gabbay and Stéphane Lengrand. The lambda-context calculus (extended
version). Information and computation, 207(12):1369–1400, 2009.

[17] Murdoch J. Gabbay and Aad Mathijssen. A Formal Calculus for Informal Equality with
Binding. In WoLLIC’07: 14th Workshop on Logic, Language, Information and Computation,
volume 4576 of Lecture Notes in Computer Science, pages 162–176. Springer, 2007.

[18] Murdoch J. Gabbay and Aad Mathijssen. Capture-Avoiding Substitution as a Nominal
Algebra. Formal Aspects of Computing, 20(4-5):451–479, June 2008.

[19] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth-order Logic. Journal of Logic
and Computation, 18(4):521–562, August 2008.

[20] Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatisation of the lambda-
calculus. Journal of Logic and Computation, September 2009. Online access.

[21] Murdoch J. Gabbay and Aad Mathijssen. Nominal (universal) algebra: equational logic
with names and binding. Journal of Logic and Computation, 19(6):1455–1508, 2009.

[22] Murdoch J. Gabbay and Dominic P. Mulligan. Semantic nominal terms. In 2nd Interna-
tional Workshop on Theory and Applications of Abstraction, Substitution and Naming (TAASN
2009), 2009.

[23] Murdoch J. Gabbay and Dominic P. Mulligan. Two level lambda-calculus. Electronic
Notes in Theoretical Computer Science, 246:107–129, 2009.

[24] Murdoch J. Gabbay and Dominic P. Mulligan. Curry-Howard for incomplete first-order
logic derivations using one-and-a-half level terms. Information and Computation, 208:230–
258, 2010.

[25] Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax with
Variable Binding. Formal Aspects of Computing, 13(3–5):341–363, 2001.

[26] Makoto Hamana. A logic programming language based on binding algebras. In
TACS’01, volume 2215 of Lecture Notes in Computer Science, pages 243–262. Springer,
2001.

[27] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Proc. 2nd Annual IEEE Symposium on Logic in Computer Science, LICS’87, pages 194–204.
IEEE Computer Society Press, 1987.

[28] Jan-Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combinatory
reduction systems. Theoretical Computer Science, 121:279–308, 1993.

[29] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In
Proceedings of RTA’08, volume 5117 of Lecture Notes in Computer Science. Springer, 2008.

[30] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

[31] Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497 – 536, 1991.

[32] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

[33] Dominic P. Mulligan. Implementation of permissive nominal terms. source code avail-
able online at: http://www.macs.hw.ac.uk/˜dpm8/permissive/, 2009.

[34] Peter Nickolas and Peter J. Robinson. The Qu-Prolog unification algorithm: formalisa-
tion and correctness. Theoretical Computer Science, 169(1):81–112, 1996.

[35] Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361–386. Academic Press, 1990.

47

http://www.gabbay.org.uk/papers.html#genmn
http://www.gabbay.org.uk/papers.html#hienr
http://www.gabbay.org.uk/papers.html
http://www.gabbay.org.uk/papers.html
http://www.gabbay.org.uk/papers.html#lamcce
http://www.gabbay.org.uk/papers.html#lamcce
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#capasn-jv
http://www.gabbay.org.uk/papers.html#oneaah-jv
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#nomalc
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#nomuae
http://www.gabbay.org.uk/papers.html#semnt-ea
http://www.gabbay.org.uk/papers.html#twollc
http://www.gabbay.org.uk/papers.html#curhif-jv
http://www.gabbay.org.uk/papers.html#curhif-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.macs.hw.ac.uk/~dpm8/permissive/

D
RA

FT

[36] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In PLDI (Programming
Language design and Implementation), pages 199–208. ACM Press, 1988.

[37] Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information
and Computation, 186(2):165–193, 2003.

[38] Andrew M. Pitts and Murdoch J. Gabbay. A Metalanguage for Programming with
Bound Names Modulo Renaming. In MPC2000, volume 1837 of Lecture Notes in Com-
puter Science, pages 230–255. Springer, 2000.

[39] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: Programming
with Binders Made Simple. In ICFP’03, volume 38, pages 263–274. ACM Press, 2003.

[40] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification. The-
oretical Computer Science, 323(1–3):473–497, 2004.

A. Supplementary proofs

Definition A.1 is useful for Proposition 2.21.

Definition A.1. Define the size of a term r by:

size(a) = 0 size(f(r1, . . . , rn)) =
∑

1≤i≤n size(ri)
size([a]r) = 1+size(r) size(π·XS) = 0

Proof of Proposition 2.21:

Proof. Reflexivity is shown by induction on terms. Symmetry is shown by induction on
derivations. Transitivity is shown by induction on the size of a term. We consider one
case from the proof of symmetry and one from the proof of transitivity:
• [a]r =α [b]s implies [b]s =α [a]r. Suppose (b a)·r =α s and b 6∈ fa(r). By Lemma 2.17
a 6∈ fa((a b) · r). From Lemmas 2.16 and 2.18, r =α (a b) · s. By Lemma 2.19,
a 6∈ fa(s). It is a fact that the size of terms is unaffected by permutation, so by
inductive hypothesis (a b) · s =α r. Extending with (=α[b]) we obtain [b]s =α [a]r as
required.

• [a]r =α [b]s and [b]s =α [c]t imply [a]r =α [c]t. Suppose (b a) · r =α s, (c b) · s =α t,
b 6∈ fa(r) and c 6∈ fa(s). By Lemma 2.18 (c b) · ((b a) · r) =α (c b) · s. It is a fact
that the size of terms is unaffected by permutation, so by inductive hypothesis also
(c b) · ((b a) · r) =α t, and by Lemmas 2.20 and 2.16 (c a) · r =α t. By Lemma 2.19
c 6∈ fa((b a) · r), so by Lemma 2.17 c 6∈ (b a) · fa(r). Therefore, c 6∈ fa(r). We use
(=α[b]) to derive [a]r =α [c]t as required.

Proof of Lemma 3.3:

Proof. By induction on r.
• The cases a and f(r1, . . . , rn) are routine.
• The case [a]r. We reason as follows:

fa(([a]r)θ) ≡ fa([a]rθ) Definition 3.2
= fa(rθ) \ {a} Definition 2.11
⊆ fa(r) \ {a} Inductive hypothesis
= fa([a]r) Definition 2.11

48

http://www.gabbay.org.uk/papers.html#metpbn
http://www.gabbay.org.uk/papers.html#metpbn
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#nomu-jv

D
RA

FT

The result follows.
• The case π·XS . By Definition 2.11, fa(π·XS) = π·S. By Definition 3.1, fa(θ(XS)) ⊆
S. Using Lemma 2.17, it follows fa(π · θ(XS)) ⊆ π · S.

Proof of Lemma 4.8:

Proof. We handle the two implications separately.
• The case ι(ȧ) 6∈ fa(JṙK∆) implies ∆ ` ȧ#ṙ. We proceed by induction on ṙ.

• The cases ḃ and f(ṙ1, . . . , ṙn) are straightforward.
• The case [ȧ]ṙ. Since ∆ ` ȧ#[ȧ]ṙ always, using (#[ȧ]).
• The case [ḃ]ṙ. Suppose ι(ȧ) 6∈ fa(J[ι(ḃ)]ṙK∆) and ι(ȧ) 6∈ fa(JṙK∆) \ {ι(ḃ)}. Then
ι(ȧ) 6∈ fa(JṙK∆), therefore ∆ ` ȧ#ṙ by inductive hypothesis. Using (#[ḃ]), we
have ∆ ` ȧ#[ḃ]ṙ, and the result follows.

• The case π̇ · Ẋ . Suppose ι(ȧ) 6∈ fa(Jπ̇ · ẊK∆). Then ι(ȧ) 6∈ Jπ̇K · S, where
S = A< \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. But Jπ̇K · A< \ {ι(ȧ) | ȧ#Ẋ ∈ ∆} is the same as
Jπ̇K · A< \ Jπ̇K · {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Then Jπ̇K · {ι(ȧ) | ȧ#Ẋ ∈ ∆} = {Jπ̇K · ι(ȧ) |
ȧ#Ẋ ∈ ∆}. Using Definition 4.6, and the fact permutations are bijective, we
have {Jπ̇K · ι(ȧ) | a#X ∈ ∆} = {ι(π̇-1 · ȧ) | π̇-1 · ȧ#X ∈ ∆}. We use (#Ẋ) to
obtain ∆ ` ȧ#Ẋ , and we have the result.

• The case ∆ ` ȧ#ṙ implies ι(ȧ) 6∈ fa(JṙK∆). We proceed by induction on the deriva-
tion of ∆ ` ȧ#ṙ.
• The cases (#ḃ) and (#f) are routine.
• The case (#[ȧ]). Suppose ∆ ` ȧ#[ȧ]ṙ using (#[ȧ]). Then J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆.

Further, ι(ȧ) 6∈ fa(JṙK∆) \ {ι(ȧ)}, and the result follows.
• The case (#[ḃ]). Suppose ∆ ` ȧ#ṙ and ι(ȧ) 6∈ fa(ṙ) by assumption. Then

∆ ` ȧ#[ḃ]ṙ by (#[ḃ]). Further, fa(J[ḃ]ṙK∆) = fa(JṙK∆) \ {ι(ḃ)}, and the result
follows.

• The case (#Ẋ). Suppose π̇-1(ȧ)#Ẋ ∈ ∆, and ∆ ` ȧ#π̇ · Ẋ by (#Ẋ). Then
Jπ̇ · ẊK∆ = Jπ̇K ·XS where S = A< \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Further, fa(Jπ̇K ·XS) =
Jπ̇K · S. The result follows from Definition 4.6.

Proof of Theorem 4.9:

Proof. We prove that JṙK∆ =α JṡK∆ implies ∆ ` ṙ = ṡ by induction on the derivation of
JṙK∆ =α JṡK∆:
• The cases ȧ and f(ṙ1, . . . , ṙn) are routine.
• The case (=α[a]). Suppose JṙK∆ =α JṡK∆ and ∆ ` ṙ = ṡ. Then using (=α[a]),

[ι(ȧ)]JṙK∆ =α [ι(ȧ)]JṡK∆ and ∆ ` [ȧ]ṙ = [ȧ]ṡ also, using (=[ȧ]). The result follows,
as [ι(ȧ)]JṙK∆ = J[ȧ]ṙK∆.

• The case (=α[b]). Suppose (ι(ḃ) ι(ȧ)) · JṙK∆ =α JṡK∆ and ι(ḃ) 6∈ fa(JṙK∆). By
Lemmas 4.7 and 4.8 J(ḃ ȧ) · ṙK∆ =α JṡK∆ and ∆ ` ḃ#ṙ. By inductive hypothesis
∆ ` (ḃ ȧ) · ṙ = ṡ. We use (=[ḃ]).

• The case (=αX). Suppose Jπ̇K|S = Jπ̇′K|S where S = A<\{ι(ȧ) | ȧ#Ẋ∈∆}. ι is
injective, so a#Ẋ ∈ ∆ for all ȧ such that π̇(ȧ) 6= π̇′(ȧ). The result follows by (=Ẋ).

49

D
RA

FT

We prove that ∆ ` ṙ = ṡ implies JṙK∆ =α JṡK∆ by induction on the derivation of ∆ `
ṙ = ṡ:
• The cases (=ȧ), (=f) and (=[ȧ]) are straightforward.
• The case (=[ḃ]). Suppose ∆ ` (ḃ ȧ) · ṙ = ṡ and ∆ ` ḃ#ṙ. By inductive hypothesis

and Lemma 4.7, (ḃ ȧ) · JṙK∆ =α JṡK∆. By Lemma 4.8, ι(ḃ) 6∈ fa(JṙK∆). The result
follows by (=α[b]).

• The case (=Ẋ). Recall that Jπ̇ · ẊK∆ = Jπ̇K ·XS and Jπ̇′ · ẊK∆ = Jπ̇′K ·XS where
S = A< \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Suppose π̇(ȧ) 6= π̇′(ȧ) implies ∆ ` ȧ#Ẋ . Using
Lemma 4.8, Jπ̇K(ι(ȧ)) 6= Jπ̇′K(ι(ȧ)) implies ι(ȧ) 6∈ S. The result follows by (=αX).

Proof of Lemma 4.13:

Proof. By induction on ṙ. We show two cases:
• The case [ȧ]ṙ. We reason as follows:

J([ȧ]ṙ)θ̇K∆ ≡ J[ȧ]ṙθ̇K∆ Definition 4.10
≡ [ι(ȧ)]Jṙθ̇K∆ Definition 4.6
≡ [ι(ȧ)]JṙK∆J(∆, θ̇)K Inductive hypothesis
≡ ([ι(ȧ)]JṙK∆)J(∆, θ̇)K Fact
≡ J[ȧ]ṙK∆J(∆, θ̇)K Definition 4.6

The result follows.
• The case π̇ · Ẋ . We reason as follows:

J(π̇ · Ẋ)θ̇K∆ ≡ Jπ̇ · θ̇(Ẋ)K∆ Definition 4.10
≡ Jπ̇K · Jθ̇(Ẋ)K∆ Definition 4.6
≡ Jπ̇K · Jθ̇K(JẊK∆) Definition 3.1

The result follows.

Proof of Lemma 4.15:

Proof. We prove by induction on r that a 6∈ fa(r) implies (b a) · r =α r:
• The cases c and f(r1, . . . , rn). Straightforward.
• The cases [a]r. We show (b a) · [a]r =α [a]r where b 6∈ fa([a]r), hence b 6∈ fa(r) and
a 6∈ fa(r). By Definition 2.9, (b a) · [a]r =α [b](b a) · r. By Definition 2.13, we must
show (a b) · ((b a) · r) =α r where a 6∈ fa((b a) · r). By Lemma 2.17, b 6∈ fa(r) implies
a 6∈ fa((b a) · r). By Lemma 2.16, (a b) · ((b a) · r) =α ((a b)◦(b a)) · r. As π = π-1, we
have r =α r. The result follows from Proposition 2.21.

• The case [b]r is similar.
• The case [c]r. Suppose b 6∈ fa([c]r), a 6∈ fa([c]r) and a, b 6∈ fa(r). We show (b a) ·

[c]r =α [c]r. By Definition 2.9, (b a) · [c]r ≡ [c](b a) · r. We use (=α[a]) and the
inductive hypothesis to obtain (b a) · r =α r.

• The case π · XS . Suppose b 6∈ fa(π · XS), a 6∈ fa(π · XS) and a, b 6∈ π · S. By
Definition 2.9, (b a) ·(π ·XS) ≡ ((b a)◦π) ·XS . Using (=αX), ((b a)◦π) ·XS =α π ·XS

whenever ((b a)◦π)|S = π|S . As a, b 6∈ π · S, ((b a)◦π)|S = π|S . The result follows.
50

D
RA

FT

We prove by induction on r that (b a) · r =α r implies a 6∈ fa(r):
• The case a, b, c and f(r1, . . . , rn) are routine.
• The case [a]r. Suppose (b a) · [a]r =α [a]r. By Definition 2.9, (b a) · [a]r ≡ [b](b a) · r.

By Definition 2.13, [b](b a) ·r =α [a]r whenever (a b) ·((b a) ·r) =α r with a 6∈ fa((b a) ·
r). By Lemma 2.16, and the fact that swappings are self-inverse, (a b) · ((b a) ·r) ≡ r.
By assumption, b 6∈ fa(r). By Lemma 2.17, a 6∈ fa((b a) · r). The result follows.

• The case [b]r is similar.
• The case [c]r. By inductive hypothesis (b a) · r =α r implies a 6∈ fa(r). The result

follows from [c](b a) · r ≡ (b a) · [c]r.
• The case π ·XS . Suppose (b a) ·π ·XS =α π ·XS . By Definition 2.9, (b a) ·π ·XS ≡

((b a)◦π) ·XS . Using (=αX), ((b a)◦π) ·XS =α π ·XS whenever (b a)◦π|S = π|S . It
is a fact that (b a)◦π|S = π|S only when b, a 6∈ π · S. The result follows.

The following definition is used in the proof of Proposition 5.4:

Definition A.2. Define the size of a support inclusion problem size(Inc) to be a tuple
(T,A, P, S), where:
− T is the number of term-formers appearing within terms in Inc,
−A is the number of abstractions appearing within terms in Inc,
− P is the number of permutations, distinct from the identity permutation, appearing
within terms in Inc, and
− S is the number of support inclusions within Inc.

We order tuples lexicographically.

Proof of Proposition 5.4:

Proof. By case analysis, checking all simplification rules reduce the measure defined in
Definition A.2.
• The case a v T, Inc′. Suppose a ∈ T , size(a v T, Inc′) = (T,A, P, S), and a v
T, Inc′ =⇒ Inc′ by (va). Then size(Inc′) = (T,A, P, S − 1). Otherwise, suppose
a 6∈ T so (va) is not applicable. No other rule is applicable by assumption, and the
result follows.

• The case f(r1, . . . , rn) v T, Inc′. Suppose size(f(r1, . . . , rn) v T, Inc′) = (T,A, P, S)
and f(r1, . . . , rn) v T, Inc′ =⇒ r1 v T, . . . , rn v T, Inc′ by (vf). Then size(r1 v
T, . . . , rn v T, Inc′) = (T − 1, A, P, S+n− 1). The result follows from the ordering.

• The case [a]r v T, Inc′. Suppose size([a]r v T, Inc′) = (T,A, P, S) and [a]r v
T, Inc′ =⇒ r v T ∪{a}, Inc′ by (v[]). Then size(r v T ∪{a}, Inc′) = (T,A−1, P, S)
and the result follows.

• The case π ·XS v T, Inc′. Suppose size(π ·XS v T, Inc′) = (T,A, P, S). Then, if
S ⊆ π-1·T , we have π·XS v T, Inc′ =⇒ Inc′ by (vX′), with measure (T,A, P, S−1).
Otherwise, if we have S 6⊆ π-1 · T and π 6= id , we have π · XS v T, Inc′ =⇒
XS v π-1 · T, Inc′ with measure (T,A, P − 1, S). By assumption, no other rules are
applicable.

The following definition is used in the proof of Proposition 6.7:

51

D
RA

FT

Definition A.3. Define the size of a unification problem size(Pr) to be a tuple (E, T,A),
where:
−E is the number of equalities appearing in the unification problem,
− T is the number of term-formers appearing within terms in the equalities of the
unification problem,
−A is the number of abstractions appearing within terms in the equalities of the uni-
fication problem.

We order tuples lexicographically.

Proof of Proposition 6.7:

Proof. By case analysis, checking all simplification rules reduce the measure defined in
Definition A.3. We consider three cases:
− The case (?=[b]). Suppose b 6∈ fa(r) and V; [a]r ?= [b]s, Pr =⇒ V; (b a) · r ?= s, Pr

by (?=[b]). Suppose further that size([a]r ?= [b]s, Pr) = (E, T,A). Then size((b a) · r ?=
s, Pr) = (E, T,A− 1), and the result follows.

− The case (I1). SupposeXS 6∈ fV (s) and fa(S) ⊆ π·S, and V;π·XS ?= s, Pr
[XS :=π-1·s]

=⇒
V;Pr[XS :=π-1 · s] by (I1). Suppose further that size(π ·XS ?= s, Pr) = (E, T,A). Then
size(Pr[XS :=π-1 · s]) = (E − 1, T, A), and the result follows.
− The case (I3). It is a fact that rewriting with (I3) terminates, because of the condi-
tion that Prv is non-trivial.

Proof of Lemma 6.8:

Proof. The empty set cannot be simplified, so suppose Pr = r
?= s, Pr′ where the sim-

plification rule acts on r ?= s. We reason by cases:
• The cases (?=a), (?=f) and (?=X) are straightforward.
• The case (?=[a]). Suppose Pr = [a]r ?= [a]s, Pr′ and [a]r ?= [a]s, Pr′ =⇒ r

?= s, Pr′

by (?=[a]). Then:
• Suppose ([a]r)θ =α ([a]s)θ. By Definition 3.2, [a](rθ) =α [a](sθ). By the rules

in Definition 2.13, rθ =α sθ. The result follows.
• Suppose rθ =α sθ. By the rules in Definition 3.2, [a](rθ) =α [a](sθ). By Defini-

tion 3.2, ([a]r)θ =α ([a]s)θ, as required.
• The case (?=[b]). Suppose Pr = [a]r ?= [b]s, Pr′, b 6∈ fa(r) and Pr =⇒ (b a) · r ?=
s, Pr′ with (?=[b]). Then:
• Suppose ([a]r)θ =α ([b]s)θ. By Definition 3.2, [a](rθ) =α [b](sθ). By the rules in

Definition 2.13, (b a) · (rθ) =α sθ. By Lemma 3.4 and Proposition 2.21, ((b a) ·
r)θ =α sθ. The result follows.

• Suppose ((b a) ·r)θ =α sθ. By Lemma 3.4 and Proposition 2.21, (b a) ·(rθ) =α sθ.
By Lemma 3.3, b 6∈ fa(rθ). Using (=α[b]), [a](rθ) =α [b](sθ). By Definition 3.2
[a](rθ) =α [b](sθ), as required.

Proof of Lemma 6.14:

52

D
RA

FT

Proof. As the empty set cannot be simplified, it must be that Pr = r
?= s, Pr′. It therefore

suffices to perform case analysis on the simplification of r ?= s. At each stage, without
loss of generality, assume Pr′ has been simplified by non-instantiating rules as much as
possible.
• The cases (?=a), (?=f) and (=αX) are routine.
• The case (?=[a]). Suppose V; [a]r ?= [a]s, Pr′ and fV ([a]r ?= [a]s, Pr′) ⊆ V , then
V; [a]r ?= [a]s, Pr′ =⇒ V; r ?= s, Pr′ by (?=[a]). By Definitions 2.12 and 6.4, fV (r ?=
s, Pr′) ⊆ V , and the result follows.

• The case (?=[b]). Suppose V; [a]r ?= [b]s, Pr′, b 6∈ fa(r) with fV ([a]r ?= [b]s, Pr′) ⊆
V , then V; [a]r ?= [b]s, Pr′ =⇒ V; (b a) · r ?= s, Pr′ by (?=[a]). By Definitions 2.12
and 6.4 it follows that fV ((b a) · r) ⊆ V , and the result follows.

Proof of Proposition 7.12:

Proof. We prove reflexivity by induction on terms; symmetry by induction on deriva-
tions; transitivity by induction on the size of a term. We include one case from the proof
of symmetry, and one from the proof of transitivity:
• λa.g =α λb.h implies λb.h =α λa.g. Suppose (b a) · g =α h and b 6∈ fa(g). By

Lemma 7.7, a 6∈ fa((b a) · h). By Lemmas 7.8 and 7.6, g =α (b a) · h. By Lemma 7.9,
a 6∈ fa(h). By inductive hypothesis (b a) · h =α g. Extending with (λ=αλ[b]) we
obtain λb.h =α λa.g, as required.

• λa.g =α λb.h and λb.h =α λc.k implies λa.g =α λc.k. Suppose (b a) · g =α h,
(c b) · h =α k, b 6∈ fa(g) and c 6∈ fa(h). By Lemma 7.6, (c b) · ((b a) · g) =α (c b) · h.
By Lemmas 7.11, 7.6 and 7.5 we have (c a) · g =α k. By Lemma 7.9, c 6∈ fa((b a) · g).
By Lemma 7.8, c 6∈ fa(g). We use (λ=αλab) to obtain λa.g =α λc.k, and the result
follows.

Proof of Lemma 8.9:

Proof. By induction on r.
• The cases a and f(r1, . . . , rn) are routine.
• The case [a]r. We reason as follows:

captA(π · [a]r) = captA([π(a)](π · r)) Definition 2.9
= captA∪{π(a)}(π · r) Definition 8.7

There are now two cases:
• The case π(a) = a. Then:

captA∪{π(a)}(π · r) = captA∪{a}(π · r) Assumption
= captA∪{a}(r) Inductive hypothesis
= captA([a]r) Definition 8.7

The result follows.

53

D
RA

FT

• The case π(a) 6= a. Then:

captA∪{π(a)}(π · r) = captA(π · r) Assumption, π(a) 6= a

= captA(r) Inductive hypothesis
= captA([a]r) Definition 8.7

The result follows.
• The case π′ ·XS . We reason as follows:

capt(π · (π′ ·XS)) = captA((π◦π′) ·XS) Lemma 2.16
= (nontriv(π◦π′) ∪A) ∩ S Definition 8.7
= (nontriv(π) ∪ nontriv(π′) ∪A) ∩ S Fact
= (nontriv(π′) ∪A) ∩ S Assumption
= captA(π′ ·XS) Definition 8.7

The result follows.

Proof of Corollary 8.10:

Proof. We reason as follows:

captA([b]r) = captA∪{b}(r) Definition 8.7
= captA∪{a,b}(r) Lemma 8.8, a 6∈ fa(r)
= captA∪{a,b}((b a) · r) Lemma 8.9
= captA∪{a}((b a) · r) Lemmas 8.8 and 2.17
= captA([a](b a) · r) Definition 8.7

The result follows.

Proof of Lemma 8.13:

Proof. By induction on r.
• The cases a and f(r1, . . . , rn) are straightforward.
• The case [a]r. Suppose a ∈ captA([a]r). Then a ∈ captA∪{a}(r), and by inductive

hypothesis XS ∈ fV (r) exists such that a ∈ S. As fV ([a]r) = fV (r), the result
follows.

• The case [b]r. Suppose a ∈ captA([b]r). Then a ∈ captA∪{b}(r), and by inductive
hypothesis XS ∈ fV (r) exists such that a ∈ S. As fV ([b]r) = fV (r), the result
follows.

• The π ·XS . The result follows immediately by Definition 8.7.

Proof of Lemma 9.11:

Proof. By induction on r.
• The cases a and f(r1, . . . , rn). Routine.

54

D
RA

FT

• The case [a]r. By Definitions 2.9 and 8.7

captA(π · [a]r) = captA∪{π(a)}(π · r).

By inductive hypothesis

captA∪{π(a)}(π · r) ⊆ ((nontriv(π) ∪A ∪ {π(a)}) ∩ uncapt(r)) ∪ capt(r).

By Definition 9.8 uncapt([a]r) = uncapt(r) \ {a}, so it suffices to show that(
(nontriv(π) ∪A ∪ {π(a)}) ∩ uncapt(r)

)
∪ capt(r)

⊆
(
(nontriv(π) ∪A) ∩ (uncapt(r) \ {a})

)
∪ capt([a]r).

By Lemma 9.9 capt(r) ⊆ capt([a]r). Therefore, we only need concern ourselves with
the ‘extra π(a)’ on the left, and the ‘missing a’ on the right.
We consider cases for the ‘extra π(a)’:
• Suppose π(a) 6= a. Then π(a) ∈ nontriv(π).
• Suppose π(a) = a and a 6∈ uncapt(r). Then {π(a)} ∩ uncapt(r) = ∅.
• Suppose π(a) = a and a ∈ uncapt(r). Then by Lemma 9.10 a ∈ capt([a]r).

We consider cases for the ‘missing a’:
• Suppose a 6∈ uncapt(r). Then uncapt(r) \ {a} = uncapt(r).
• Suppose a ∈ uncapt(r). Then by Lemma 9.10 a ∈ capt([a]r).

In all cases, the result follows.
• The case π′ ·XS . Then:

captA((π◦π′) ·XS) = (nontriv(π◦π′) ∪A) ∩ S
⊆ (nontriv(π) ∪ nontriv(π′) ∪A) ∩ S
= (((nontriv(π) ∪A) \ nontriv(π′)) ∩ S) ∪ (nontriv(π′) ∩ S)
= (((nontriv(π) ∪A) \ nontriv(π′)) ∩ S) ∪ capt(π′ ·XS)
= ((nontriv(π) ∪A) ∩ (S \ nontriv(π′))) ∪ capt(π′ ·XS)
= ((nontriv(π) ∪A) ∩ uncapt(π′ ·XS)) ∪ capt(π′ ·XS)

The result follows.

55

	Introduction
	About nominal terms and permissive nominal terms
	Difference 1: about fixing freshness contexts
	Difference 2: about choosing fresh atoms
	Permissive nominal terms in this paper
	Map of the paper

	Permissive nominal terms
	Foundations of permission sets

	Substitutions, problems, and solutions
	Substitutions
	Unification problems, and solutions

	Relation to nominal terms
	Alpha-equivalence between nominal and permissive nominal terms
	Substitutions and solutions between nominal and permissive nominal unification problems

	Support inclusion problems
	Simplification reduction and normal forms
	Building solutions for support inclusion problems
	Support reduction example

	Permissive nominal unification problems
	The unification algorithm
	Examples of the algorithm
	Preservation of solutions
	Simplification rewrites calculate principal solutions

	Lambda-term syntax
	Translating nominal terms to lambda-term syntax
	The translation, and its soundness
	Capturable atoms; injectivity and minimality

	Translating substitutions; relating solutions of nominal and pattern unification problems
	Translating substitutions
	Translating permissive nominal unification to pattern unification; soundness, weak completeness
	Strong Completeness

	Conclusions
	Related work
	Future work

	Supplementary proofs

