
Permissive nominal terms and their unification

Gilles Dowek Murdoch J. Gabbay Dominic Mulligan

Abstract. We introduce permissive nominal terms. Nominal terms ex-
tend first-order terms with binding. They lack properties of first- and
higher-order terms: Terms must be reasoned on in a context of ‘freshness
assumptions’; it is not always possible to ‘choose a fresh variable sym-
bol’ for a nominal term; and it is not always possible to ‘alpha-convert
a bound variable symbol’. Permissive nominal terms recover these ‘al-
ways fresh’ and ‘always alpha-rename’ properties. Freshness contexts are
elided and the notion of unifier is based on substitution alone rather than
on nominal terms’ notion of substitution plus freshness conditions. We
prove that all expressivity of nominal unification is retained.

1 Introduction

Many formal languages feature variable binding : examples include λ-abstraction,
quantification, and sets comprehension {x | φ(x)}. Binding is ubiquitous, because
variables are there to be bound or substituted.

Variables cannot be bound in first-order terms (constructed from variables
and term-formers). This motivates extensions of first-order syntax; logics where
variables can be bound by function or predicate symbols [DHK02], rewriting on
terms with binders [KvOvR93,MN98,FG07], and languages with datatypes with
binders [PE88,Mil91,SPG03,HHP87,Pau90,CU04].

We will study nominal terms [UPG04]. These preserve the flavour of first-
order terms and extend them to represent informal statements like

“If y 6∈ fv(t) then λx.t is α-equivalent with λy.[y/x]t” and
“How can we choose t and u to make λx.λy.(y t) equal to λx.λx.(x u)?”.

(We write fv(t) for the free variables of t; e.g. fv(λx.(xy)) = {y}.)
Nominal terms use a characteristic combination of features: two levels of

variable (atoms and unknowns), freshness conditions, permutations, and a dis-
tinctive theory of α-equivalence (see Section 6 or [UPG04] for details). The
first statement above is rendered in nominal terms as the equality judgement
b#X ` [a]X = [b](b a) ·X. Here a and b denote atoms, which represent the ‘x’
and ‘y’; X denotes an unknown, it represents the ‘t’; b#X is a freshness side-
condition, it represents the ‘y 6∈ fv(t)’; (b a) is a permutation meaning ‘map a to
b and b to a’, it represents the ‘[y/x]’ (we assumed y 6∈ fv(t), so this is possible).

Yet nominal terms from [UPG04] have some less attractive properties too:
− Freshness contexts are not fixed so we must often prove properties of terms-
in-freshness context. This is harder than reasoning just about terms.

−We cannot always pick a fresh variable symbol and α-rename a bound vari-
able. For X in the empty freshness context, there is — by definition of the
empty freshness context — no a such that a#X.1

We propose permissive nominal terms. An unknown takes the form XS where
S is a permission sort (Definition 3). Permission sorts are sets of atoms that are
both infinite and co-infinite (see Definition 2; S ⊆ X is co-finite when X \ S
is infinite). Thus, we can always choose a fresh atom, always α-convert (Defini-
tion 8, Lemma 12), α-equivalence is independent of a freshness context (there
is no freshness context), and the notion of unifier is based just on substitution
rather than (as for nominal terms) a freshness context and a substitution.

We illustrate this with two examples; definitions are in the paper. comb is
an infinite, co-infinite set of atoms. Suppose a, b ∈ comb. Assume a binary term-
former (function-symbol) for application. Then:
− α-equivalence is ‘if y 6∈ fv(u) then λx.u = λy.(u[x/x])’.
In nominal terms this becomes b#Z ` [a]Z = [b](b a)·Z.2 In permissive nominal
terms it becomes [a]Zcomb\{b} = [b](b a) · Zcomb\{b}.
It is not possible to α-convert a in the nominal term ∅ ` [a]Z; to do this, we
must enrich the freshness context ∅.
In permissive nominal terms, it is always possible to α-convert a in [a]Zcomb\{b};
we can convert to any of the atoms not in comb \ {b}.
− ‘Unify λx.λy.(yt) with λx.λx.(xu)’ becomes in nominal terms ‘[a][b](bX) ?=
[a][a](a Y)’ and has solution (b#Y, [X:=(b a) · Z, Y :=Z]).
In permissive nominal terms it becomes ‘[a][b](bXcomb) ?= [a][a](aY comb)’ and
has solution [Xcomb :=Zcomb\{b}, Y comb :=Zcomb\{b}].

Unification is the basis of rewriting and logic programming. Nominal terms
have served as the basis of both [FG07,CU04]. Therefore, and following that
work, in this paper we explore permissive nominal unification.

2 Permissive nominal terms

Definition 1 Fix a countably infinite set A of atoms. We use a permutative
convention that a, b, c, . . . will range over distinct atoms. Fix a set of term-
formers. f, g, h will range over distinct term-formers.

Examples of term-formers are symbols like lam, app, and forall. In the presence
of rewrites or equational axioms we can make these term-formers ‘do’ something;
in this paper, they are just ways of building terms with suggestive names.
1 ‘Freshness contexts’ sounds like ‘typing contexts’, but the terminology misleads.

Extending a typing context makes more terms typable and, intuitively, extends the
universe of discourse with extra typable terms. Extending a freshness context makes
more terms equal. This is a more drastic event because it is more likely to change
the behaviour of existing elements; they may now be equal to other elements with
quite different behaviour.

2 In the body of the paper we put dots on atoms and unknowns in nominal terms, to
emphasise the difference from permissive nominal terms. Here, we do not bother.

Definition 2 Call S ⊆ A co-infinite when A \ S is infinite. Fix an infinite, co-
infinite set comb ⊆ A. A permission sort has the form (comb∪A1)\A2 for finite
sets A1⊆A and A2⊆A. S, S′, T will range over permission sorts.

If S and T are permission sorts, so are S ∪ T and S ∩ T , and both S and
A \ S are infinite.

Definition 3 For each S fix a disjoint countably infinite set of unknowns of
sort S. XS , Y S , ZS , will range over distinct unknowns of sort S. If S 6= S′

then there is no particular connection between XS and XS′ . V will range over
finite sets of unknowns (we use this from Section 4 onwards).

Definition 4 A permutation is a bijection on atoms such that {a | π(a) 6= a}
is finite. π and π′ will range over permutations (not necessarily distinct).

Write id for the identity permutation such that id(a) = a always. Write
(a b) for the swapping which maps a to b, b to a, and all other c to themselves.

Definition 5 Define (permissive nominal) terms by:

r, s, t, . . . ::= a | f(r1, . . . , rn) | [a]r | π ·XS

We write ≡ for syntactic identity; r ≡ s when r and s denote identical terms.

Definition 6 Define a permutation action by:

π·a≡π(a) π·(f(r1, . . . , rn))≡f(π·r1, . . . , π·rn) π·[a]r≡[π(a)](π·r) π·(π′·XS)≡(π◦π′)·XS

Definition 7 If S ⊆ A, define the pointwise action by: π · S = {π(a) | a ∈ S}.
Define free atoms fa(r) and unknowns fV (r) by:

fa(a)={a} fa(f(r1, . . . , rn)) = fa(r1) ∪ . . . ∪ fa(rn) fa([a]r)=fa(r)\{a} fa(π·XS)=π·S

fV (a)=∅ fV (f(r1, . . . , rn)) = fV (r1) ∪ . . . ∪ fV (rn) fV ([a]r)=fV (r) fV (π·XS)={XS}

An intuition for fa(r) is ‘possible free atoms after instantiation’.

Definition 8 Let π|S denote the partial function ‘π restricted to S’. Define
α-equivalence =α inductively by:

(=αaa)
a =α a

r1 =α s1 · · · rn =α sn (=αf)f(r1, . . . , rn) =α f(s1, . . . , sn)
r =α s (=α[a])[a]r =α [a]s

(b a) · r =α s (b 6∈ fa(r)) (=α[b])[a]r =α [b]s
(π|S = π′|S) (=αX)

π ·XS =α π
′ ·XS

Lemma 9 id · r ≡ r and π′ · (π · r) ≡ (π′◦π) · r.

Lemma 10 π · fa(r) = fa(π · r).

Theorem 11 =α is transitive, reflexive, and symmetric.

Lemma 12 For any r, there exist infinitely many b such that b 6∈ fa(r). As a
corollary, for any r and a there exists infinitely many fresh b (so b 6∈ fa(r)) such
that for some s, [a]r =α [b]s.
Proof. The first part is by an easy induction on r. We consider only the case
r ≡ π ·XS : fa(π ·XS) = π ·S, and infinitely many b are such that b 6∈ π ·S. The
corollary follows using (=α[b]).

3 Substitutions

Definition 13 A substitution θ is a function from unknowns to terms such
that fa(θ(XS)) ⊆ S always (so S in XS describes the ‘permission’ we have to
instantiate XS , namely to terms with free atoms in S). θ, θ′, θ1, θ2, will range
over substitutions.3

Write id for the identity substitution mapping XS to id ·XS always. It will
always be clear whether id means the identity substitution or permutation.

Suppose fa(t) ⊆ S. Write [XS :=t] for the substitution such that [XS :=t](XS) ≡
t and [XS :=t](Y T) ≡ id · Y T for all other Y T .

Definition 14 Define a substitution action of substitutions on terms by:

aθ≡a f(r1, . . . , rn)θ≡f(r1θ, . . . , rnθ) ([a]r)θ≡[a](rθ) (π·XS)θ≡π·θ(XS)

Theorem 15 fa(rθ) ⊆ fa(r).

Proof. By induction on r. We consider the case r ≡ π ·XS . By definition fa(π ·
XS) = π · S. By assumption in Definition 13, fa(θ(XS)) ⊆ S. Using Lemma 10,
it follows that fa(π · θ(XS)) ⊆ π · S.

Lemma 16 π · (rθ) ≡ (π · r)θ.

Proof. By a routine induction on r using the definitions and Lemma 9.

Theorem 17 If θ(XS) =α θ
′(XS) for all XS ∈ fV (r), then rθ =α rθ

′.

Definition 18 Define composition θ◦θ′ by (θ◦θ′)(XS) ≡ (θ(XS))θ′.

Theorem 19 (rθ)θ′ ≡ r(θ◦θ′).
Proof. By induction on r. We consider the case of π · XS , and use Lemma 16:
(π ·XS)(θ◦θ′) ≡ π · (θ◦θ′)(XS) ≡ π · (θ(XS)θ′) ≡ (π · θ(XS))θ′ ≡ ((π ·XS)θ)θ′

4 Support inclusion problems

Recall from Definition 13 that fa(θ(XS)) ⊆ fa(XS) = S, and from Theorem 15
that instantiation must reduce the set of free atoms. We will exhibit an al-
gorithm which, intuitively, solves the problem “please make fa(rθ) ⊆ T true”
(Definition 27 and Lemma 25). In fact the algorithm calculates solutions that
are most general, in a sense made formal in Theorem 32.

Definition 20 A support inclusion is a pair r v T of a term and a permission
sort. A support inclusion problem is a finite multiset of support inclusions;
Inc will range over support inclusion problems. Call θ a solution to Inc when
fa(rθ) ⊆ T for every r v T ∈ Inc. Write Sol(Inc) for the solutions of Inc.
3 ‘fa(θ(XS)) ⊆ S’ looks absent in nominal terms theory ([UPG04, Definition 2.13],

[FG07, Definition 4]), yet it is there: see the conditions ‘∇′ ` θ(∇)’ in Lemma 2.14,
and ‘∇ ` a#θ(t)’ in Definition 3.1 of [UPG04]. More on this in Section 6.

Definition 21 Define a simplification rewrite relation by:

(va) a v T, Inc =⇒ Inc (a ∈ T)
(vf) f(r1, . . . , rn) v T, Inc =⇒ r1 v T, . . . , rn v T, Inc
(v[]) [a]r v T, Inc =⇒ r v T ∪ {a}, Inc
(vX) π ·XS v T, Inc =⇒ id ·XS v π-1 · T, Inc (S 6⊆ π-1 · T, π 6= id)
(vX′) π ·XS v T, Inc =⇒ Inc (S ⊆ π-1 · T)

Lemma 22 If Inc =⇒ Inc′ then Sol(Inc) = Sol(Inc′).

Proof. We consider (vX). Suppose S 6⊆ π-1 · T and π 6= id . Suppose θ ∈ Sol(π ·
XS v T, Inc). Then fa((π ·XS)θ) ⊆ T . By Lemma 16 (π ·XS)θ ≡ π · (XSθ). By
Lemma 10 fa(π · (XSθ)) = π · fa(XSθ). So π · fa(XSθ) ⊆ T . π is a bijection, so
fa(XSθ) ⊆ π-1 · T and θ ∈ Sol(XS v π-1 · T, Inc). Conversely, if θ ∈ Sol(XS v
π-1 · T, Inc) then θ ∈ Sol(π ·XS v T, Inc) follows by a similar argument.

Lemma 23 Support inclusion problem simplification is confluent and terminat-
ing. Write nf (Inc) for the unique =⇒-normal form of Inc.

Proof.(Sketch) Support inclusion problem simplification is strongly confluent
(see, for instance [BN98]), hence it is confluent. It is not hard to define a notion
of size on problems such that rewrite rules strictly reduce the size of the problem
they act on; it follows that simplification is terminating.

Definition 24 Call Inc consistent when a v T 6∈ nf (Inc) for all atoms a and
permission sorts T . Call Inc solvable when Sol(Inc) 6= ∅. Call Inc non-trivial
when nf (Inc) 6= ∅.

Lemma 25 If Inc is consistent then all inc ∈ nf (Inc) have the form XS v T
where S 6⊆ T .

Definition 26 Define fV (Inc) by fV (Inc) =
⋃
{fV (r) | ∃T.r v T ∈ Inc}.

Definition 27 Let V range over finite sets of unknowns.
Suppose Inc is consistent. For every XS ∈ V make a fixed but arbitrary

choice of X ′S′ such that X ′S′ 6∈ V and S′ = S ∩
⋂
{T | XS v T ∈ nf (Inc)}.

We make our choice injectively; for distinctXS ∈ fV (Inc) and Y T ∈ fV (Inc),
we choose X ′S′ and Y ′T

′
distinct. It will be convenient to write V ′VInc for the set

of our choices {X ′S′ | XS ∈ V}. Define a substitution ρVInc by:

ρVInc(X
S) ≡ id ·X ′S′ if XS ∈ V ρVInc(Y

T) ≡ id · Y T otherwise.

Lemma 28 If Inc is consistent then ρVInc ∈ Sol(Inc). (‘ρVInc solves Inc’.)

Proof. Suppose Inc is a =⇒-normal form. If XS v T ∈ Inc then ρVInc(X) =
id ·X ′S′ for an S′ which, by construction, satisfies S′ ⊆ T . The result follows.

More generally, if Inc is not a =⇒-normal form then note that by Lemma 22
Sol(Inc) = Sol(nf (Inc)); we use the previous paragraph.

Theorem 29 Inc is consistent if and only if Inc is solvable.

Proof. By Lemma 22 Sol(Inc) = Sol(nf (Inc)), so it suffices to show the result
for the special case that Inc is a =⇒-normal form.

Suppose Inc is inconsistent, so nf (Inc) contains some support inclusions of
the form a v T where a 6∈ T . aθ ≡ a always, so there is no substitution θ such
that aθ ⊆ T . Conversely, if Inc is consistent the result follows by Lemma 28.

Definition 30 Suppose that Inc is consistent, fV (Inc) ⊆ V, and θ ∈ Sol(Inc).
Define a substitution θ-ρVInc by:

– (θ-ρVInc)(X
′S′) ≡ θ(XS) if XS ∈ V and ρVInc(X

S) ≡ id ·X ′S′ .
– (θ-ρVInc)(X

S) ≡ θ(XS) if XS 6∈ V.

Lemma 31 Suppose θ ∈ Sol(Inc) and fV (Inc) ⊆ V. Then ρVInc exists, and θ-ρVInc
is a substitution.

Proof. If θ ∈ Sol(Inc) then Inc is solvable (Definition 20). By Theorem 29,
Inc is consistent. Therefore ρVInc from Definition 27 exists. We now show that
fa((θ-ρVInc)(X

′S′)) ⊆ S always. We reason by cases:
−The case that id ·X ′S′ ≡ ρVInc(X

S) for XS ∈ V.
It is not hard to prove that fV (nf (Inc)) ⊆ fV (Inc) always, so fV (nf (Inc)) ⊆ V.
There are two sub-cases:
−The case XS 6∈ fV (nf (Inc)). Then S = S′ and (θ-ρVInc)(X

′S) = θ(XS).
By assumption fa(θ(XS)) ⊆ S.
−The caseXS ∈ fV (nf (Inc)). θ ∈ Sol(Inc) so by Lemma 22 θ ∈ Sol(nf (Inc))
and so fa(θ(XS)) ⊆ T for every T such that XS v T ∈ nf (Inc). By definition
S′ =

⋂
{T | XS v T ∈ nf (Inc)} and the result follows.

−Otherwise, (θ-ρVInc)(X
S) ≡ θ(XS). By assumption fa(θ(XS)) ⊆ S.

Theorem 32 Suppose θ ∈ Sol(Inc) and suppose fV (Inc) ⊆ V. Then θ(XS) ≡
(ρVInc ◦ (θ-ρVInc))(X

S) for every XS ∈ V.

Proof. ρ(XS) ≡ id · X ′S for some fresh X ′S 6∈ V, and (θ-ρVInc)(X
′S) ≡ θ(XS).

The result follows by Lemma 9.

5 Permissive nominal unification problems

5.1 Problems, solutions, the unification algorithm

Definition 33 An equality (problem) is a pair r ?= s. A problem Pr is a
finite multiset of equalities. Define Prθ by Prθ = {rθ ?= sθ | r ?= s ∈ Pr}.

Definition 34 θ solves Pr when r
?= s ∈ Pr implies rθ =α sθ. Write Sol(Pr)

for the set of solutions to Pr. Call Pr solvable when Sol(Pr) is non-empty.

A solution to Pr ‘makes the equalities valid’, as for first- and higher-order uni-
fication. This simplifies the nominal unification notion of solution (Definition 66
or [UPG04, Definition 3.1]) based on ‘a substitution + a freshness context’.

Lemma 35 θ ◦ θ′ ∈ Sol(Pr) if and only if θ′ ∈ Sol(Prθ).

Proof. Suppose θ ◦ θ′ ∈ Sol(Pr) and r
?= s ∈ Pr. We reason using Theorem 19:

(rθ)θ′ ≡ r(θ ◦ θ′) =α s(θ ◦ θ′) ≡ (sθ)θ′. The reverse implication is similar.

Definition 36 If Pr is a problem, define a support inclusion problem Prv by:
Prv = {r v fa(s), s v fa(r) | r ?= s ∈ Pr}.

Definition 37 Define a simplification rewrite relation V;Pr =⇒ V ′;Pr′ by:

(
?
=a) V; a

?
= a, Pr =⇒ V;Pr

(
?
=f) V; f(r1, . . .)

?
= f(s1, . . .), P r =⇒ V; r1

?
= s1, . . . , P r

(
?
=[a]) V; [a]r

?
= [a]s, Pr =⇒ V; r

?
= s, Pr

(
?
=[b]) V; [a]r

?
= [b]s, Pr =⇒ V; (b a) · r ?

= s, Pr
(b 6∈ fa(r))

(
?
=X) V;π ·XS ?

= π ·XS , P r =⇒ V;Pr

(I1) V;π ·XS ?
= s, Pr

[XS :=π-1·s]
=⇒ V;Pr[XS :=π-1 · s]

(XS 6∈ fV (s), fa(s) ⊆ π · S)

(I2) V; r
?
= π ·XS , P r

[XS :=π-1·r]
=⇒ V;Pr[XS :=π-1 · r]

(XS 6∈ fV (r), fa(r) ⊆ π · S)

(I3) V;Pr
ρVPrv
=⇒ V ∪ V ′VPrv ;Pr ρ

V
Prv

(Prv consistent and non-trivial)

Call (?=a), (?=f), (?=[a]), (?=[b]), and (?=X) non-instantiating rules.
Call (I1), (I2), and (I3) instantiating rules.

We insist Prv is non-trivial (Definition 20) to avoid indefinite rewrites. We
insist Prv is consistent so ρVPrv exists. ρVPrv and V ′VPrv are defined in Definition 27.

Lemma 38 If Pr =⇒ Pr′ by a non-instantiating rule then Sol(Pr) = Sol(Pr′).

Proof. The interesting case is (?=[b]). Suppose that Pr = [a]r ?= [b]s, Pr′′ and
b 6∈ fa(r) and so Pr =⇒ (b a) · r ?= s, Pr′′ with (?=[b]). Then:
− Suppose ([a]r)θ =α ([b]s)θ. By Definition 14 [a](rθ) =α [b](sθ). By the struc-
ture of the rules in Definition 8, (b a)·(rθ) =α sθ. By Lemma 16 and Theorem 11,
((b a) · r)θ =α sθ.
− Suppose ((b a)·r)θ =α sθ. By Lemma 16 and Theorem 11, (b a)·(rθ) =α sθ. By
Theorem 15 b 6∈ fa(rθ). Therefore by (=α[b]) [a](rθ) =α [b](sθ). By Definition 14
[a](rθ) =α [b](sθ), as required.

Definition 39 Define fV (Pr) =
⋃
{fV (r) ∪ fV (s) | r ?= s ∈ Pr}.

Definition 40 Suppose V is a set of unknowns. Define θ|V by:4

θ|V(X) ≡ θ(X) if X ∈ V θ|V(X) ≡ id ·X otherwise.

4 We overload |, for technical convenience: π|S (Definition 8) is partial and θ|V is total.

Definition 41 If Pr is a problem, define a unification algorithm by:

1. Rewrite fV (Pr);Pr using the rules of Definition 37 as much as possible,
with top-down precedence (so apply (?=a) before (?=f), and so on down to
(I3)).

2. If we reduce to V ′; ∅, we succeed and return θ|V where θ is the functional
composition of all the substitutions labelling rewrites (we take θ = id if there
are none). Otherwise, we fail.

Lemma 42 The algorithm of Definition 41 always terminates.

Proof. By an easy argument using a notion of the size of a unification problem.

Lemma 43 Suppose θ(XS) =α θ
′(XS) for all XS ∈ fV (Pr). Then θ ∈ Sol(Pr)

if and only if θ′ ∈ Sol(Pr).

Proof. Unpacking Definition 34 it suffices to show that rθ =α sθ if and only if
rθ′ =α sθ

′, for every r ?= s ∈ Pr. This is easy using Theorem 17 and the fact by
construction (Definition 39) that fV (r) ⊆ fV (Pr) and fV (s) ⊆ fV (Pr).

Definition 44 Write θ-XS for the substitution such that:
(θ-XS)(XS) ≡ id ·XS and (θ-XS)(Y T) ≡ θ(Y T) for all other Y T

Theorem 45 Suppose (id ·XS)θ =α sθ and XS 6∈ fV (s). Then:
θ(XS) =α ([XS :=s]◦(θ-XS))(XS) and θ(Y T) =α ([XS :=s]◦(θ-XS))(Y T)

Proof. We reason as follows:

([XS :=s]◦(θ-XS))(XS) ≡ s(θ-XS) Definition 14
≡ sθ XS 6∈ fV (s), Theorem 17
=α θ(XS) Assumption

([XS :=s]◦(θ-XS))(Y T) ≡ (θ-XS)(Y T) Definition 18
≡ θ(Y T) Definition 44

5.2 Simplification rewrites calculate principal solutions

Definition 46 Write θ1 ≤ θ2 when there exists θ′ such that XSθ2 =α X
S(θ1◦θ′)

always. We call ≤ the instantiation ordering.

Definition 47 A principal (or most general) solution to a problem Pr is a
solution θ ∈ Sol(Pr) such that θ ≤ θ′ for all other θ′ ∈ Sol(Pr).

Our main results are Theorems 48 — the unification algorithm from Defini-
tion 41 calculates a solution — and 53 — the solution it calculates, is principal.

Theorem 48 Suppose fV (Pr) ⊆ V. If V;Pr
θ

=⇒∗ V ′; ∅ then θ|V ∈ Sol(Pr).

Proof. By induction on the length of the path in
θ

=⇒∗ . If it has length 0 then
Pr = ∅ and θ ≡ id and the result follows. Otherwise, there are three cases:

−The non-instantiating case. Suppose V;Pr =⇒ V;Pr′′
θ

=⇒∗ V ′; ∅. By easy
calculations fV (Pr′′) ⊆ V. By inductive hypothesis θ|V ∈ Sol(Pr′′). By Lemma 38,
θ|V ∈ Sol(Pr).

−The case of (I1) or (I2). Suppose V;Pr
χ

=⇒ V;Prχ
θ′

=⇒∗ V ′; ∅. By easy
calculations fV (Prχ) ⊆ V. By inductive hypothesis θ′|V ∈ Sol(Prχ). It is a
fact that (χ ◦ θ′)|V = χ ◦ (θ′|V). By Lemma 35, (χ ◦ θ′)|V ∈ Sol(Pr).

−The case of (I3). Suppose V;Pr
ρ

=⇒ V ′;Prρ
θ′

=⇒∗ V ′′; ∅. By easy calcula-
tions fV (Prρ) ⊆ V ′. By inductive hypothesis θ′|V′ ∈ Sol(Prρ). By Lemma 35,
ρ ◦ (θ′|V′) ∈ Sol(Pr). It is a fact that ρ ◦ (θ′|V′) = (ρ ◦ θ′)|V′ . By Lemma 43,
(ρ ◦ θ′)|V ∈ Sol(Pr).

Lemma 49 If θ1 ≤ θ2 then θ◦θ1 ≤ θ◦θ2.

Proof. By Definition 46 θ′ exists such that XSθ2 =α X
S(θ1◦θ′) always. We use

Theorems 19 and 17: XS(θ◦θ2) ≡ (XSθ)θ2 =α (XSθ)(θ1 ◦θ′) ≡ XS((θ◦θ1)◦θ′)

Lemma 50 Suppose XSθ2 =α X
Sθ′2 always. Then θ1 ≤ θ2 implies θ1 ≤ θ′2.

Proof. By a routine calculation unpacking Definition 46 and using Theorem 11.

Lemma 51 If r =α s then fa(r) = fa(s).

Lemma 52 If θ ∈ Sol(Pr) (Definition 34) then θ ∈ Sol(Prv) (Definition 20).

Proof. Using Lemma 51.

Theorem 53 Suppose fV (Pr) ⊆ V. If V;Pr
θ

=⇒∗ V ′; ∅ then θ|V is a principal
solution to Pr.

Proof. By Theorem 48 θ|V ∈ Sol(Pr). We prove that θ|V is principal by induction

on the path length of V;Pr
θ

=⇒∗ V ′; ∅.
− Length 0. So Pr = ∅ and θ = id |V . id |V ≤ θ′|V is a fact of Definition 46.
− Length k + 1. We consider the rules in Definition 37.

−The non-instantiating case. Suppose V;Pr =⇒ V;Pr′
θ

=⇒∗ V ′; ∅ where
V;Pr =⇒ V;Pr′ is non-instantiating. By inductive hypothesis, θ|V is a prin-
cipal solution of Pr′. By Lemma 38 θ|V is also a principal solution of Pr.
−The case (I1). Suppose fa(s)⊆π·S and XS 6∈ fV (s). Write χ=[XS :=π-1·s].
Suppose Pr = π ·XS ?= s, Pr′′ so that V;π ·XS ?= s, Pr′′

χ
=⇒ V;Pr′′χ and

suppose V;Pr′′χ
θ′′

=⇒∗ V ′; ∅ and θ′|V ∈ Sol(Pr).
By Theorem 48 θ′′|V ∈ Sol(Pr′′χ). It is routine to check that fV (Pr′′χ) ⊆ V.
By Theorem 45 and Lemma 43, χ◦(θ′|V -XS) ∈ Sol(Pr). It is a fact that
(θ′|V -XS) = (θ′-XS)|V so by Lemma 35, (θ′−XS)|V ∈ Sol(Pr′′χ).
By inductive hypothesis θ′′|V ≤ (θ′-XS)|V . By Lemma 49 we have χ◦(θ′′|V) ≤
χ◦(θ′-XS)|V . Now by assumption fV (s) ⊆ V and X ∈ V, and it follows that
χ◦(θ′′|V) = (χ◦θ′′)|V . Also, it is a fact that (θ′−XS)|V = θ′|V -XS . By Theo-
rem 45 and Lemma 50, (χ◦θ′′)|V ≤ θ′|V as required.
−The case (I2) is similar to the case of (I1).

−The case (I3). Suppose Prv is consistent and non-trivial. Write ρ = ρVPrv,

so that V;Pr
ρ

=⇒ V ′′;Prρ and V ′′;Prρ
θ′′

=⇒∗ V ′; ∅ and suppose θ′|V ∈ Sol(Pr).
By Theorem 48 θ′′|V′′ ∈ Sol(Prρ). V ′′ = V ∪ V ′VPrv, so fV (Prρ) ⊆ V ′′. By
Lemma 52 θ′|V ∈ Sol(Prv). By Theorem 32 and Lemma 43 it follows that
ρ◦(θ′|V -ρ) ∈ Sol(Pr). By Lemma 35, θ′|V -ρ ∈ Sol(Prρ).
By inductive hypothesis θ′′|V ≤ θ′|V -ρ. By Lemma 49 ρ◦θ′′|V ≤ ρ◦(θ′|V -ρ). It
is a fact that ρ◦(θ′′|V) = (ρ◦θ′′)|V . By Theorem 32 and Lemma 50, (ρ◦θ′′)|V ≤
θ′|V as required.

Lemma 54 If V;Pr
χ

=⇒ V;Pr′ with (I1) or (I2) then θ ∈ Sol(Pr) implies
θ-χ ∈ Sol(Pr′). Similarly, if V;Pr

ρ
=⇒ V ′;Pr′ with (I3) then θ ∈ Sol(Pr)

implies θ-ρ ∈ Sol(Pr′).
Proof. Suppose fa(s)⊆π · S and XS 6∈ fV (s). Write χ=[XS :=π-1 · s]. Suppose
Pr = π ·XS ?= s, Pr′′ so that V;π ·XS ?= s, Pr′′

χ
=⇒ V;Pr′′χ. Now suppose θ ∈

Sol(Pr). By Lemma 43 and Theorem 45, χ◦(θ-XS)) ∈ Sol(Pr). By Lemma 35,
θ-XS ∈ Sol(Prχ). It follows that θ-XS ∈ Sol(Pr′′χ) as required.

Suppose Prv is consistent and non-trivial. Write ρ = ρVPrv, so that V;Pr
ρ

=⇒
V ′′;Prρ. Now suppose θ ∈ Sol(Pr). By Lemma 43 and Theorem 32, ρ◦(θ-ρ) ∈
Sol(Pr). By Lemma 35, θ-ρ ∈ Sol(Prρ) as required.

Theorem 55 Given a problem Pr, if the algorithm of Definition 41 succeeds
then it returns a principal solution; if it fails then there is no solution.
Proof. If the algorithm succeeds we use Theorem 53. Otherwise, the algorithm
generates an element of the form f(r1, . . . , rn) ?= f(r′1, . . . , r

′
n′) where n 6= n′,

f(. . .) ?= g(. . .), f(. . .) ?= [a]s, f(. . .) ?= a, [a]r =α a, [a]r =α b, a
?= b, a Pr such

that Prv is inconsistent, or π · XS ?= r or r ?= π · XS where XS ∈ fV (r). By
arguments on syntax and size of syntax, no solution to the reduced problem
exists. It follows by Lemma 54 that no solution to Pr exists.

6 Relation to nominal terms

In permissive nominal terms, freshness information is fixed once and for all. This
is mentioned already as a design alternative in [UPG04, Remark 2.6], but there,
we would obtain ‘permission sorts’ A such that A is infinite and A \ A is finite.
Permission sorts of co-infinite sets of atoms are new, as far as we know.

We will now develop the intuitively clear connection with [UPG04] into a
precise mathematical correspondence between nominal unification and permis-
sive nominal unification. Definition 59 translates from ‘nominal’ to ‘permissive’.
Theorems 62 and 63 express how this translation is sound and complete for re-
spective notions of α-equivalence. Theorem 71 then shows the most interesting
fact: that furthermore, solutions to unification problems are also preserved across
the translation.

A feature of Definition 59 is that it maps nominal terms to permissive nominal
terms with free atoms in comb. In nominal terms we may need to enrich the

freshness context (see [GM07, Figure 2, axiom (fr)] and [GM09b, e.g. Lemma
25 and Theorem 33]). One way to view the interpretation of Definition 59 is
therefore this: comb is ‘the atoms we had available so far’ (any other permission
sort would do as well) and A \ comb is ‘the atoms with which we will extend
the freshness context, in the future’. Both these sets are countably infinite, and
syntax is finite, so it is not absolutely necessary to explicitly separate them:
permissive nominal terms do this, for each fixed permission sort S; nominal
terms do not.

Definition 56 Fix a countably infinite set of nominal atoms, Ȧ. ȧ, ḃ, ċ, . . .
will range over distinct nominal atoms. Fix a bijection ι between Ȧ and comb
(Definition 2). Fix a countably infinite set of nominal unknowns. Ẋ, Ẏ , Ż, . . .
will range over distinct nominal unknowns. A nominal permutation is a bi-
jection π̇ on Ȧ such that {ȧ | π̇(ȧ) 6= ȧ} is finite. π̇, π̇′, π̇′′, . . . will range over
permutations.

Write π̇-1 for the inverse of π̇, ˙id for the identity permutation, and π̇◦π̇′ for
function composition, as is standard. For example, (π̇◦π̇′)(ȧ) = π̇(π̇′(ȧ))

Definition 57 Define nominal terms by ṙ, ṡ, ṫ ::= ȧ | π̇ · Ẋ | [ȧ]ṙ | f(ṙ, . . . , ṙ),
with permutation action

π̇·ȧ ≡ π̇(ȧ) π̇·f(ṙ1, . . .) ≡ f(π̇·ṙ1, . . .) π̇·[ȧ]ṙ ≡ [π̇(ȧ)](π̇·ṙ) π̇·(π̇′·Ẋ) ≡ (π̇◦π̇′)·Ẋ

Write ≡ for syntactic identity. f ranges over term-formers (Definition 1).

Definition 58 A freshness is a pair ȧ#ṙ. An equality is a pair ṙ = ṡ. A fresh-
ness context is a finite set of freshnesses of the form ȧ#Ẋ. Define derivable
freshness and derivable equality by:

(#ḃ)
∆ ` ȧ#ḃ

∆ ` ȧ#ṙi (1 ≤ i ≤ n)
(#f)

∆ ` ȧ#f(ṙ1, . . . , ṙn)
(#[ȧ])

∆ ` ȧ#[ȧ]ṙ

∆ ` ȧ#ṙ
(#[ḃ])

∆ ` ȧ#[ḃ]ṙ

(π̇-1(ȧ)#Ẋ ∈ ∆)
(#Ẋ)

∆ ` ȧ#π · Ẋ

(=ȧ)
∆ ` ȧ = ȧ

∆ ` ṙi = ṡi (1 ≤ i ≤ n)
(=f)

∆ ` f(ṙ1, . . . , ṙn) = f(ṡ1, . . . , ṡn)

∆ ` ṙ = ṡ
(=[ȧ])

∆ ` [ȧ]ṙ = [ȧ]ṡ

∆ ` (ḃ ȧ) · ṙ = ṡ ∆ ` ḃ#ṙ
(=[ḃ])

∆ ` [ȧ]ṙ = [ḃ]ṡ

(ȧ#Ẋ ∈ ∆ for every π̇(ȧ) 6= π̇′(ȧ))
(=Ẋ)

∆ ` π̇ · Ẋ = π̇′ · Ẋ

Definition 58 repeats [UPG04, Figure 2], up to differences in presentation. A full
discussion of nominal terms is in [UPG04]. ∆ ` ȧ#ṙ corresponds with ‘a 6∈ fa(r)’
(made formal in Lemma 61), and ∆ ` ṙ = ṡ corresponds with ‘r =α s’ (see
Theorems 62 and 63). ∆ plays the role of permissions sorts, but is part of the
judgement-form.

Definition 59 Define a mapping Jπ̇K from nominal permutations to permissive
nominal permutations by Jπ̇K(ι(ȧ)) = ι(π̇(ȧ)) and Jπ̇K(c) = c for all c ∈ A\comb.
Define an interpretation JṙK∆ by:

JȧK∆ ≡ ι(ȧ) Jf(ṙ1, . . . , ṙn)K∆ ≡ f(Jṙ1K∆, . . . , JṙnK∆) J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆
Jπ̇ · ẊK∆ ≡ Jπ̇K ·XS where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}

Here, we make a fixed but arbitrary choice of XS for each Ẋ, injectively so that
JẊK∆ and JẎ K∆ are always distinct.

Lemma 60 Jπ̇K · JṙK∆ ≡ Jπ̇ · ṙK∆

Lemma 61 ι(ȧ)6∈fa(JṙK∆) if and only if ∆ ` ȧ#ṙ. b 6∈fa(JṙK∆) if b ∈ A\comb.

Theorem 62 JṙK∆ =α JṡK∆ implies ∆ ` ṙ = ṡ.

Proof. Induction on the derivation of JṙK∆ =α JṡK∆. We consider some cases:
−The case (=α[b]). Suppose (ι(ḃ) ι(ȧ)) ·JṙK∆ =α JṡK∆ and ι(ḃ) 6∈ fa(JṙK∆). By
Lemmas 60 and 61 J(ḃ ȧ) · ṙK∆ =α JṡK∆ and ∆ ` ḃ#ṙ. By inductive hypothesis
∆ ` (ḃ ȧ) · ṙ = ṡ. We use (=[ḃ]).
−The case (=αX). Suppose Jπ̇K|S = Jπ̇′K|S where S = comb\{ι(ȧ) | ȧ#Ẋ∈∆}.
ι is injective, so a#Ẋ ∈ ∆ for all ȧ such that π̇(ȧ) 6= π̇′(ȧ). We use (=Ẋ).

Theorem 63 If ∆ ` ṙ = ṡ then JṙK∆ =α JṡK∆.

Proof. Induction on the derivation of ∆ ` ṙ = ṡ. We consider some cases:
−The case (=[ḃ]). Suppose ∆ ` (ḃ ȧ) · ṙ = ṡ and ∆ ` ḃ#ṙ. By inductive
hypothesis and Lemma 60, (ḃ ȧ) · JṙK∆ =α JṡK∆. By Lemma 61 ι(ḃ) 6∈ fa(JṙK∆).
We use (?=[b]).
−The case (=Ẋ). Recall that Jπ̇ · ẊK∆ = Jπ̇K ·XS and Jπ̇′ · ẊK∆ = Jπ̇′K ·XS

where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Suppose π̇(ȧ) 6= π̇′(ȧ) implies ∆ ` ȧ#Ẋ.
Using Lemma 61, Jπ̇K(ι(ȧ)) 6= Jπ̇′K(ι(ȧ)) implies ι(ȧ) 6∈ S. We use (?=X).

Definition 64 A substitution θ̇ is a function from nominal unknowns to nom-
inal terms such that {Ẋ | θ̇(Ẋ) 6≡ ˙id · Ẋ} is finite. θ̇, θ̇′, θ̇′′, . . . will range over
nominal substitutions. Write ˙id for the identity, mapping Ẋ to ˙id · Ẋ.

Definition 65 Define a substitution action on nominal terms by:

ȧθ̇ ≡ ȧ f(ṙ1, . . . , ṙn)θ̇ ≡ f(ṙ1θ̇, . . . , ṙnθ̇) ([ȧ]ṙ)θ̇ ≡ [ȧ](ṙθ̇) (π̇·Ẋ)θ̇ ≡ π̇·θ̇(Ẋ)

Definition 66 Following [UPG04, Definition 3.1], a unification problem Ṗ r
is a finite multiset of freshnesses and equalities. A solution to Ṗ r is a pair (∆, θ̇)
such that ∆ ` ȧ#ṙθ̇ for every ȧ#ṙ ∈ Ṗ r, and ∆ ` ṙθ = ṡθ for every ṙ = ṡ ∈ Ṗ r.

Definition 67 We extend the interpretation of Definition 59 to solutions by:

J(∆, θ̇)K(XS) ≡ Jθ̇(X)K∆ if id ·XS≡JXK∆ J(∆, θ̇)K(Y T) ≡ id ·Y T otherwise

Lemma 68 JṙK∆J(∆, θ̇)K ≡ Jṙθ̇K∆.

Proof. By inductions on ṙ. We consider the case π̇·Ẋ, and reason using Lemma 60:
J(π̇ · Ẋ)θ̇K∆ ≡ Jπ̇ · θ̇(Ẋ)K∆ ≡ Jπ̇K · Jθ̇(Ẋ)K∆ ≡ Jπ̇K · Jθ̇K(JẊK∆)

Definition 69 Define JṖ rK∆ by mapping ṙ = ṡ to JṙK∆
?= JṡK∆ and mapping

ȧ#ṙ to (b ι(ȧ)) · JṙK∆
?= JṙK∆, for some choice of fresh b (so b 6∈ fa(JṙK∆); in fact,

it suffices to choose some b 6∈ comb).

Lemma 70 Suppose b 6∈ fa(r). Then a 6∈ fa(r) if and only if (b a) · r =α r.

Theorem 71 (∆, θ̇) solves Ṗ r if and only if J(∆, θ̇)K solves JṖ rK∆.

Proof. We sketch the necessary reasoning.
Suppose ∆ ` ṙθ̇ = ṡθ̇. By Lemma 68 and Theorem 63, JṙK∆J(∆, θ̇)K =α

JṡK∆J(∆, θ̇)K. The reverse direction uses Theorem 62.
Suppose ∆ ` a#ṙθ̇. By Lemmas 61, 70, 68, and 16 ((b ι(ȧ)) ·JṙK∆)J(∆, θ̇)K =α

JṙK∆J(∆, θ̇)K. Here, we use the b chosen fresh in Definition 69. The reverse direc-
tion uses the same results.

7 Conclusions

Nominal contrasted with permissive nominal terms. It can be problematic that
in nominal terms [GM09b,GM08] we often want to enrich the freshness context,
e.g. to α-convert or in solving a unification problem. Also, it is unfortunate that
we cannot ‘just quotient terms by α-conversion’ since we cannot apply nominal
abstract syntax [GP01] ... to nominal terms. Permissive nominal terms let us
do all these things, and they behave more like first-order terms; we recover
Lemma 12, α-equivalence is a property of terms, and the notions of unification
problem and solution involve just equality, not equality-and-freshness-context.

The step from permissive nominal terms to nominal terms makes a remark-
ably big difference. This has implications for developing nominal techniques fur-
ther; we believe that in many situations, permissive nominal terms may be easier
to work with and better-behaved. By Definition 59 and Theorem 71, there is no
loss in expressivity.

Permissive nominal terms do not necessarily obsolete nominal terms; if we
really do want to discuss ‘an arbitrary term’, then the nominal terms unknown
Ẋ from Section 6 may be more simply and directly useful than Xcomb . One
possibly interesting extension of permissive nominal terms, is with variables for
permission sorts.

Note that the unification algorithm in [UPG04] solves freshnesses concur-
rently with equalities. We have factored the algorithm differently, so that prob-
lems to do with free atoms (Section 4) are solved separately from problems to
do with equalities (Section 5). The link is rule (I3) in Definition 37.

Concerning implementation, permissive nominal terms are implementable.
Sorts are infinite sets of atoms, but differ finitely from comb and so may be
finitely represented in an implementation.

Related work not based on nominal techniques. Permissive nominal terms re-
semble first- and higher-order terms more than do nominal terms, but they are
a special case of neither. Higher-order patterns also have good properties of
first-order terms [Mil91]. A significant difference is that the notion of unification
is based on capture-avoiding substitution rather than the (permissive) nominal
term capturing substitution; this gives the system a different flavour. The reader
is referred to a recent paper [LV08], which goes some way to teasing out formal
connections between these two approaches.

Permission sorts can be compared with the types used in [DHK00] and fully
developed in [NPP07] that indicate the atoms that may appear in a term.

Hamana’s β0 unification of λ-terms with holes adds a capturing substitution
[Ham01]. Level 2 variables (which are instantiated) are annotated with level
1 variable symbols that may appear in them; permissive nominal terms move
in this direction in the sense that permission sorts also describe which level 1
variable symbols (we call them atoms in this paper) may appear in them, though
with our permission sorts there are infinitely many that may, and infinitely
many that may not. The treatment of α-equivalence in Hamana’s system is not
nominal (not based on permutations) and Hamana’s system does not have most
general unifiers. Similarly Qu-Prolog [NR96] adds level 2 variables, but does not
manage α-conversion in nominal style and also, for better or for worse, it is more
ambitious in what it expresses and loses mathematical properties (unification is
semi-decidable, most general unifiers need not exist).

Future work. We have investigated how the instantiation ordering interacts with
the interpretation of Section 6. Most general solutions of nominal unification
problems in the sense of [UPG04, Definition 3.1] do translate to most general so-
lutions of the translated problem, in the sense of Definition 46. It is also possible
to leverage permissive nominal terms to improve on the correspondence between
nominal unification and Miller’s pattern unification [Mil92,Mil91] reported on in
[LV08]; in [LV08] only solvability is considered, but permissive nominal terms’
good properties can be applied to give a particularly neat translation of solu-
tions between permissive nominal unification and higher-order pattern unifica-
tion. These results with full proofs will be reported in a journal version of this
paper.

We hypothesise that ‘permissive’ versions of nominal rewriting, logic pro-
gramming, and algebra, should be possible, following previous work using nom-
inal terms [FG07,CU03,GM07,GM09a]. On this topic, addressing a point by
Fernández, suppose c 6∈ comb; then the rewrite Xcomb → Xcomb cannot trigger
the rewrite Ucomb∪{c} → Ucomb∪{c} because there is no π such that π · comb =
comb∪{c}, and likewise there is no substitution σ, because of the side-condition
that fa(σ(Xcomb)) ⊆ comb. It may therefore be desirable to consider only per-
missions sorts of the form comb \ A for A ⊆ A finite. This is not a problem
for unification and the proofs in this paper because they do not ‘add’ atoms
to permissions sorts (we only ever need to ‘subtract’ them, as in Section 4).
Alternatively, as mentioned above, we could consider permissive nominal terms
syntax with variables ranging over permissions sorts.

References

BN98. Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, Great Britain, 1998.

CU03. J. Cheney and C. Urban. System description: Alpha-Prolog, a fresh approach to logic
programming modulo alpha-equivalence. In UNIF’03, pages 15–19. Universidad Po-
litecnica de Valencia, 2003.

CU04. James Cheney and Christian Urban. Alpha-prolog: A logic programming language
with names, binding and alpha-equivalence. In Bart Demoen and Vladimir Lifschitz,
editors, Proc. of the 20th Int’l Conf. on Logic Programming (ICLP 2004), number
3132 in Lecture Notes in Computer Science, pages 269–283. Springer, 2004.

DHK00. G. Dowek, Th. Hardin, and C. Kirchner. Higher-order unification via explicit substi-
tutions. Information and Computation, 157, 2000.

DHK02. Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Binding logic: Proofs and mod-
els. In LPAR ’02: Proceedings of the 9th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, pages 130–144, London, UK,
2002. Springer.

FG07. Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting (journal version).
Information and Computation, 205(6):917–965, 2007.

GM07. Murdoch J. Gabbay and Aad Mathijssen. A formal calculus for informal equality with
binding. In Proceedings of 14th Workshop on Logic, Language and Information in
Computation (WoLLIC 2007), volume 4576 of Lecture Notes in Computer Science,
pages 162–176, 2007.

GM08. Murdoch J. Gabbay and Dominic P. Mulligan. One-and-a-halfth Order Terms: Curry-
Howard for Incomplete Derivations. In Proceedings of 15th Workshop on Logic, Lan-
guage and Information in Computation (WoLLIC 2008), volume 5110 of Lecture
Notes in Artificial Intelligence, pages 180–194, 2008.

GM09a. Murdoch J. Gabbay and Aad Mathijssen. Nominal (universal) algebra: equational logic
with names and binders. Journal of Logic and Computation, 2009. Accepted subject
to revision.

GM09b. Murdoch J. Gabbay and Dominic P. Mulligan. Two-and-a-halfth Order Lambda-
calculus. Electronic Notes in Theoretical Computer Science, 2009. To appear.

GP01. Murdoch J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with
Variable Binding (journal version). Formal Aspects of Computing, 13(3–5):341–363,
2001.

Ham01. Makoto Hamana. A logic programming language based on binding algebras. In
TACS’01, volume 2215 of Lecture Notes in Computer Science, pages 243–262.
Springer, 2001.

HHP87. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. In
Proc. 2nd Annual IEEE Symposium on Logic in Computer Science, LICS’87, pages
194–204. IEEE Computer Society Press, 1987.

KvOvR93. J.-W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems.
Theoretical Computer Science, 121:279–308, 1993.

LV08. Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective.
In Proceedings of RTA’08, volume 5117 of Lecture Notes in Computer Science, pages
246–260. Springer, 2008.

Mil91. Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

Mil92. Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

MN98. Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical Computer Science, 192:3–29, 1998.

NPP07. Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type
theory. Transactions on Computational Logic, 2007.

NR96. Peter Nickolas and Peter J. Robinson. The Qu-Prolog unification algorithm: formali-
sation and correctness. Theoretical Computer Science, 169(1):81–112, 1996.

Pau90. Lawrence C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361–386. Academic Press, 1990.

PE88. F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI (Programming
Language design and Implementation), pages 199–208. ACM Press, 1988.

SPG03. M. R. Shinwell, A. M. Pitts, and Murdoch J. Gabbay. FreshML: Programming with
Binders Made Simple. In ICFP’03, volume 38, pages 263–274. ACM Press, 2003.

UPG04. Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal Unification.
Theoretical Computer Science, 323(1–3):473–497, 2004.

http://www.gabbay.org.uk/papers.html#nomr-jv
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#forcie
http://www.gabbay.org.uk/papers.html#curhid
http://www.gabbay.org.uk/papers.html#curhid
http://www.gabbay.org.uk/papers.html#nomaue
http://www.gabbay.org.uk/papers.html#nomaue
http://www.gabbay.org.uk/papers.html#twoaah
http://www.gabbay.org.uk/papers.html#twoaah
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#newaas-jv
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#frepbm
http://www.gabbay.org.uk/papers.html#nomu-jv

	Permissive nominal terms and their unification
	Gilles Dowek Murdoch J. Gabbay Dominic Mulligan
	Introduction
	Permissive nominal terms
	Substitutions
	Support inclusion problems
	Permissive nominal unification problems
	Problems, solutions, the unification algorithm
	Simplification rewrites calculate principal solutions

	Relation to nominal terms
	Conclusions

