
1

Private delegated computations using strong
isolation

Mathias Brossard†, Guilhem Bryant†, Basma El Gaabouri†, Xinxin Fan⋆, Alexandre Ferreira†,
Edmund Grimley-Evans†, Christopher Haster†, Evan Johnson‡, Derek Miller†, Fan Mo¶,

Dominic P. Mulligan§, Nick Spinale†, Eric van Hensbergen†, Hugo J. M. Vincent†, Shale Xiong†
†Systems Research Group, Arm Ltd., Cambridge UK & Austin, TX

§AWS ⋆IoTeX.io ‡University of California, San Diego ¶Imperial College London

Abstract—Computations are now routinely delegated to third-parties. In response, Confidential Computing technologies are being
added to microprocessors offering a trusted execution environment (TEE) that provides confidentiality and integrity guarantees to code
and data hosted within—even in the face of a privileged attacker. TEEs, along with an attestation protocol, permit remote third-parties
to establish a trusted “beachhead” containing known code and data on an otherwise untrusted machine. Yet, they introduce many new
problems, including: how to ease provisioning of computations safely into TEEs; how to develop distributed systems spanning multiple
classes of TEE; and what to do about the billions of “legacy” devices without support for Confidential Computing? Tackling these
problems, we introduce Veracruz, a pragmatic framework that eases the design and implementation of complex privacy-preserving,
collaborative, delegated computations among a group of mutually mistrusting principals. Veracruz supports multiple isolation
technologies and provides a common programming model and attestation protocol across all of them, smoothing deployment of
delegated computations over supported technologies. We demonstrate Veracruz in operation, on private in-cloud object detection on
encrypted video streaming from a video camera. In addition to supporting hardware-backed TEEs—like AWS Nitro Enclaves and Arm®

Confidential Computing Architecture Realms—Veracruz also provides pragmatic “software TEEs” on Armv8-A devices without
hardware Confidential Computing capability, using the high-assurance seL4 microkernel and our IceCap framework.

Index Terms—Confidential Computing, Trusted Execution Environments, Veracruz, IceCap, seL4, software enclaves, attestation

✦

1 INTRODUCTION

Code and data are now routinely shared with a delegate
who is better placed to host a computation. While Cloud
computing is the obvious exemplar of this trend, other
forms of distributed computing—including volunteer Grid
Computing, wherein machines lend spare computational
capacity to realize some large computation, and Ambient
Computing, wherein computations are mobile and hop from
device-to-device as computational contexts change—also
see computations freely delegated to third parties.

At present, in the absence of the widespread deployment
of Advanced Cryptography, delegating computations to a
third party inexorably means entering into a trust relation-
ship with the delegate, and for some especially sensitive
computations this may be simply unacceptable. Yet, even
for less sensitive delegated computations, there is still an
interest in limiting the scope of this trust relationship. In
the Cloud context, though hosts may be reputable, technical
means may be desired to shield computations from prying
or interference which may originate from many sources,
not only from the hosting company: malefactors may ex-
ploit hypervisor bugs to spy on co-tenants, for example.
Cloud hosts also see an interest in deniable hosting, wherein
technical measures ensure that a customer’s computations
simply cannot be interfered with, or spied upon, by the
hosts themselves—even in the face of legal compulsion.
For Ambient and volunteer Grid Computing, nodes must
be assumed hostile and assumed to be trying to undermine

§. All work by Mulligan done whilst employed with Arm Research

a computation, either through malice or as a consequence
of bugs or transient glitches. As a result, volunteer Grid
Computing deployments may schedule computations on
multiple independent nodes and check for consistency.

In response, novel Confidential Computing technolo-
gies are being added to microprocessor architectures
and Cloud infrastructure, providing protected computing
environments—which we call trusted execution environ-
ments, or TEEs—that provide strong confidentiality and
integrity guarantees to code and data hosted within, even
in the face of a privileged attacker. TEEs are also typically
paired with an attestation protocol, allowing a third-party
to deduce, with high confidence, that a remote TEE is
authentic and correctly configured. Taken together, one may
establish a protected “beachhead” on an untrusted third-
party’s machine to protect delegated computations.

TEEs offer a range of benefits, namely allowing pro-
grammers to design arbitrarily complex privacy-preserving
distributed systems using standard tools and programming
idioms that run at close to native speed. Moreover, com-
pared to cryptographic alternatives, Confidential Comput-
ing technology is available for use and deployment in real
systems today. Yet, the emergence of Confidential Comput-
ing technology poses some interesting problems.

First, some TEE implementations have unfortunately
fallen short of their promised guarantees. A substantial
body of work, demonstrating that side-channel (see e.g., [1]
amongst others) and fault injection attacks (see e.g., [2]
amongst others) can be used to exfiltrate secrets from TEEs,



2

now exists, and a perception—at least in the academic
community and technical press—appears to be forming
that TEEs are fundamentally broken and any research that
builds upon them need necessarily justify that decision.
We argue that this perception is an instance of the perfect
being the enemy of the good, as many identified flaws will
be gradually ironed out over time, either in point-fixes,
iterated designs, or by the adoption of software models that
avoid known vulnerabilities. Moreover, industrial adoption
of TEEs will be widespread, arguably already in evidence
with the formation of consortia such as the LF’s Confiden-
tial Computing Consortium, and an ecosystem of industrial
users who pragmatically evaluate TEEs in comparison with
the status quo, where delegated computations are—by and
large—left completely unprotected. It is this standard which
should be applied when evaluating systems built around
TEEs, not comparison with side-channel free Advanced
Cryptography, still impractical in an industrial context.

Second, TEEs simply provide an empty, albeit secure,
container. Associated questions like how computations are
securely provisioned, how to make this process foolproof
and straightforward, and how systems are designed and
built around TEEs as a new primitive, are left unanswered.
Moreover, for some distributed system such as Grid and
Ambient computing systems it is feasible that different types
of TEE will be used within a single larger system. Here,
bridging differences in attestation protocol and program-
ming model will be key, as will be easing deployment and
scheduling of computations hosted within TEEs.

For this reason, we introduce our main research contri-
bution: Veracruz (see §3), a framework that abstracts over
TEEs and their attestation processes, supporting multiple
different isolation technologies, including hardware-backed
TEEs like AWS Nitro Enclaves and Arm Confidential Com-
puting Architecture Realms (on a private branch). Adding
support for more technologies is straightforward.

With Veracruz, our main contribution is a practical and
pragmatic framework that allows non-experts to make use
of TEE technologies, abstracting over their more complex
aspects—attestation and secure provisioning of code and
data, for example. In particular, Veracruz provides a uni-
form programming model across different TEEs—using We-
bAssembly (Wasm) [3]—and a generalized form of attes-
tation, providing a “write once, TEE anywhere” style of
development. As a result, programs can be protected using
any supported isolation technology without recompilation.

Veracruz’s portability and support for a wide range of
TEE-like technologies, each with their own strengths and
weaknesses, allows users to match their needs to a partic-
ular TEE technology, and even quickly swap technologies
when these needs change. However, users must be aware
of the inherent weaknesses of their chosen isolation tech-
nology when deploying computations with Veracruz, as
there are some threats—for example, hardware side-channel
attacks—that Veracruz simply cannot practically solve uni-
formly in software without becoming overly unwieldy or
inefficient for real-world use-cases. With Veracruz, we make
pragmatic decisions over what threats to try to counter, and
how, and our threat model is discussed in §3.4.

Veracruz captures a general form of interaction between
mistrusting parties, and is easily specialized to obtain an ar-

ray of delegated, privacy-preserving computations of inter-
est. To support this, we describe how Veracruz can be used
for secure ML model aggregation, and an industrial case-
study built around AWS Nitro Enclaves, demonstrating an
end-to-end encrypted video decoding and object-detection
flow, using deep learning to process video obtained from an
IoT camera (see §4).

Lastly, billions of existing devices have been shipped
without explicit support for Confidential Computing, and
these will be used for years to come. Is there some pragmatic
isolation mechanism that we could use on “legacy” devices
which, while falling short of the confidentiality and integrity
guarantees offered by hardware-backed TEEs, can yet pro-
vide believable isolation for workloads? In response, we
introduce a second research contribution: IceCap (see §2), a
pragmatic “software TEE” for Armv8-A devices without ex-
plicit support for Confidential Computing, using the high-
assurance seL4 microkernel to provide confidentiality and
integrity for VMs, with little overhead. IceCap is supported
by Veracruz, and taken together, one may design and deploy
delegated computations across hardware- and software-
TEEs on next-generation and legacy hardware, alike.

2 ICECAP

IceCap is a hypervisor with a minimal trusted computing
base (TCB) built around the formally verified seL4 micro-
kernel. Admittedly, IceCap cannot provide as strong a secu-
rity promise as hardware TEEs, such as Arm Confidential
Computing Architecture (Arm CCA), but it does provides
a pragmatic, flexible and better-than-nothing software TEE for
many existing Armv8-A devices. The IceCap hypervisor
relegates the untrusted operator to a domain of limited priv-
ilege called the host. This domain consists of a distinguished
virtual machine—housing a rich operating system such
as Linux—and a minimal accompanying virtual machine
monitor. The host domain manages the device’s CPU and
memory resources, and drives device peripherals which the
TCB does not depend on. This includes opaque memory
and CPU resources for confidential virtual machines—or
TEEs. However, the host does not have the right to access
the resources of TEEs—while scheduling and memory man-
agement policy is controlled by the host, mechanism is the
responsibility of more trustworthy components.

IceCap’s TCB includes the seL4 microkernel and com-
partmentalized, privileged seL4-native services running in
EL0—the least privilege level for AArch64. These co-operate
defensively with the host to expose the TEE lifecycle,
scheduling, and memory management mechanisms.

At initialization, the hypervisor extends from the de-
vice’s root of trust via a device-specific measured boot pro-
cess and then passes control to the untrusted host domain. A
remote party coordinates with the host to spawn a new TEE
by sending a declarative specification of the TEE’s initial
state to IceCap’s trusted spawning service, via the host, which
then carves-out the requested memory and CPU resources
from resources which are inaccessible to the host. A process
on the host, called the shadow virtual machine monitor, pro-
vides untrusted paravirtualized device backends to TEEs,
and also acts as a token representing the TEE in the host’s



3

scheduler allowing the host operating system to manage
TEE scheduling policy with minimal modification.

To support attestation of TEEs, IceCap would use a
platform-specific measured boot to prove its own identity
and then attest that of an TEE to a remote challenger. This
is not yet implemented, with IceCap attestation stubbed to
support Veracruz. It is straightforward to implement.

seL4 is accompanied by security and functional correct-
ness proofs, checked in Isabelle/HOL [4], [5], [6], providing
assurance that IceCap correctly protects TEEs from software
attacks. By using seL4, IceCap will also benefit from ongoing
research into the elimination of certain classes of timing
channels [7]. The trusted seL4 userspace components of
IceCap are not yet verified, though they are compartmen-
talized and initialized using CapDL [8], which has a formal
semantics known to be amenable to verification from previ-
ous work. Using the high-level seL4 API, these components
are also implemented at a high level of abstraction in Rust,
making auditing easier and eliminating the need to subvert
the Rust compiler’s memory safety checks—even for com-
ponents which interact with hardware address translation
structures. The IceCap TCB is small and limited in scope—
about 40,000 lines of code. Virtual machine monitors are
moved to the trust domains of the virtual machines they su-
pervise, thereby eliminating emulation code from the TCB.
Towards that end, cross-domain fault handling is replaced
with higher-level message passing via seL4 IPC.

TEEs are also protected with the System MMU (SMMU)
from attacks originating from peripherals under the host’s
control. IceCap is designed to seamlessly take advantage
of hardware security features based on address translation-
based access controls—Arm TrustZone, for example. Trust-
Zone firmware typically uses the NS state bit to implement
a coarse context switch, logically partitioning execution on
the application processor into two worlds. IceCap could use
this to run TEEs out of secure-world memory resources, pro-
tected by platform-specific mechanisms which may mitigate
certain classes of physical attack.

Under IceCap, TEE and host incur a minimal per-
formance overhead compared to host and guests under
KVM [9]. We use Firecracker [10]—an open-source VMM
for KVM from AWS—as a point of comparison, due to its
minimalism for the sake of performance, and preference for
paravirtualization over emulation. Compute-bound work-
loads in IceCap TEEs incur a ∼2.2% overhead compared to
native Linux processes and a ∼1.8% overhead compared to
Firecracker guests due to context switches through the TCB
on timer ticks (see Table 1). The virtual network bandwidth
between host and TEE represents how data flows through
IceCap in bulk. However, at the time of writing, untrusted
network device emulation differs from Firecracker’s trusted
network device emulation in ways that hinder a satisfying
comparison, and with this in mind, we note guest-to-host
incurs a ∼9.9% bandwidth overhead, whereas host-to-guest
outperforms Firecracker by a small margin. As IceCap’s
implementation matures, we expect virtual network band-
width overhead to settle between these two points.

The great performance of seL4 IPC helps reduce IceCap’s
performance overhead, further helped by minimizing VM
exits using aggressive paravirtualization: VMMs for both
host and guest do not even map any of their VMs’ memory

Events per second (via sysbench)

Host Guest

Firecracker 586.18 582.65 (-0.60%)
IceCap 583.68 (-0.43%) 572.28 (-2.18%)

Bandwidth (Gbits/sec)

Guest → Host Host → Guest

Firecracker 3.42 3.14
IceCap 3.08 (-9.9%) 3.18 (+1.3%)

Table 1: Overheads for IceCap compute-bound workloads
(top) and virtual network performance (bottom)

into their address spaces—their only runtime responsibility
is emulating the interrupt controller, with their VMs em-
ploying interrupt mitigation to even avoid that.

Next, we introduce a framework for designing and de-
ploying privacy-preserving delegated computations across
various different isolation technologies—IceCap included.

3 VERACRUZ

Throughout this section we make reference to the system
components presented in the schematic in Fig. 1. In partic-
ular, we make reference to components of the global policy,
presented on the left of the diagram, in the text below.

Veracruz is a framework which may be specialized to
obtain a particular privacy-preserving, collaborative com-
putation of interest. A Veracruz computation involves an
arbitrary number of data owners, trying to collaborate with
multiple program owners. The framework places no limits
on the number of principals collaborating, but a particular
computation obtained by specializing Veracruz will always
spell out a precise number, P⃝. We use πm to denote the
program of one of the P program owners, and use Di for
1 ≤ i ≤ N to denote the data sets of the various data owners
in an arbitrary Veracruz computation.

Collectively, the goal of the various principals, P⃝,
is straightforward: they wish to compute the value
πm(D1, . . . , DN ), that is, the value of the program πm

applied to the N inputs of the various data owners. To
do this, they may choose to make use of a third party
machine to power the computation, D⃝. We refer to the
owner of this machine as the delegate, assumed capable of
launching an TEE of a type that Veracruz supports, loaded
with the Veracruz trusted runtime, V⃝. This runtime acts
as a “neutral ground” within which a computation takes
place, and provides strong sandboxing guarantees to the
delegate, who is loading untrusted code in the form of πm,
onto their machine. The runtime is open-source, auditable
by principals assuming bit-for-bit reproducible builds.

Each principal in a Veracruz computation has a mixture
of roles, consisting of some combination of data provider,
program provider, delegate, and result receiver. While
the first three have been implicitly introduced, the latter
role refers to principals who will receive the result of the
computation. The identification details of each principal, in
the form of cryptographic certificates (or an IP address for
the delegate), and their mixture of roles, is captured in a
public global policy configuration file, which parameterizes



4

Program Owner, π Data Owner(s), {Di} Result Receiver(s)

P⃝ Mutually Distrusting Principals

U⃝ Untrusted Bridge

T⃝ TLS Endpoint

S⃝ Virtual File System 3⃝ Execution Engine: π(Di)V ⃝
Tr

us
te

d
Ve

ra
cr

uz
R

un
ti

m
e

U⃝
U

ntrusted
Bridge

D⃝ Delegate

µ

µ

µ

µ

G⃝ Global Policy:
{principals:
[{cert:#1...
file_rights: [...]},
{...}, ... ],
progs_hashes:[...],
delegate_info:...,
proxy_info:...,
runtime_TEE_hash:...,
ciphersuites:...

}

X⃝ Proxy
Attestation

Service

Native
Attestation

Service

1⃝ 2⃝ 4⃝

N⃝ Send Native
Attestation

N⃝ Forward
Native

Attestation

C⃝ Return
Certificate

WASI

W
A

SI

A⃝ Audit and Examine

L⃝ Publish, Load and Seal

Figure 1: An overview of an abstract Veracruz computation, showing principals and their roles, major system components,
and a suggestive depiction of data-flow. TEEs, that host the Veracruz runtime, are marked with boxes with padlocks.

each computation, and which also contains other important
bits of metadata. Only one principal may be delegate.

The global policy, G⃝, captures the topology of a com-
putation, specifying where information may flow from,
and to whom, in a computation, while varying the pro-
gram πm varies precisely what is being computed. Ver-
acruz stores data and programs as files in a virtual, in-
memory filesystem (VFS) maintained by the Veracruz run-
time, S⃝, and whose content never leaves the TEE, destroyed
when the TEE is torn down. With VFS, the constraint on
information flow is achieved by assigning different file
capabilities (file_rights, a mapping from paths to ca-
pabilities) to different principals (principals). Program
behaviours are indirectly constrained by agreed programs
hashes (progs_hashes) in the policy; programs with in-
correct or unexpected hashes cannot be executed by the
Veracruz runtime. By varying topology and policy, Veracruz
can capture a general pattern of interaction shared by many
delegated computations, and one could, for example, effect
a varied palette of computations of interest:
- Moving heavy computations safely off a computationally-
weak device to an untrusted edge device or server. The
computationally-weak device is both data provider and re-
sult receiver, the untrusted edge device or server is delegate,
and the computationally-weak device or its owner is the
program provider, providing the task to be performed.
- Privacy-preserving machine learning between a pair of mutually
distrusting principals with private datasets, but where learnt
models are made available to both principals. Both principals
are data providers, contributing their datasets provided in
some common format, and also act as result receivers for the
learnt model. Arbitrarily one acts as the program provider,
providing the machine learning algorithm of interest, and
the delegate, e.g., a Cloud host.
- A DRM mechanism wherein novel IP (e.g., computer vision
algorithms) are licensed out on a “per use” basis, and where the
IP is never exposed to customers. The IP owner is program
provider, and the licensee is both data provider and result
receiver, providing the inputs to, and receiving the output
from, the private IP. The IP owner themselves may act as
delegate, or this can be contracted out to a third-party. With
this, the IP owner never observes the input or output of the
computation, and the licensee never observes the IP.

In addition, it is easy to see how more complex dis-
tributed systems can be built around Veracruz. For example,
a volunteer Grid computing framework where confidential-
ity is not paramount, but computational integrity is; an Am-
bient computing runtime for mobile computations across
a range of devices; a privacy-preserving MapReduce [11]
or Function-as-a-Service (FaaS, henceforth) style framework.
Here, computational nodes act as an independent delegate
for some aspect of the wider computation, and different isola-
tion technologies may also be used in a single computation,
either due to availability for Grid or Ambient computing,
or due to scheduling of sensitive sub-computations onto
stronger isolation mechanisms for MapReduce.

In the most general case, each principal in a Veracruz
computation is mutually mistrusting, and does not wish to
declassify their data: data providers do not wish to divulge
their input datasets and the program provider does not wish
to divulge their program. We are not awared of any practical
and general solution to directly bounding the program
behaviours, therefore, in this case, principals need to blindly
trust the program hashes in the global policy. Neverthe-
less, as the examples enumerated above indicate, for some
computations declassification can be useful, for example as
inducement to other principals to enroll in the computation,
a public “nothing up my sleeve” demonstration. Refer-
ring back to the privacy-preserving machine learning use-
case, above, a program provider may intentionally declassify
their program for auditing—before other principals agree
to participate—as a demonstration that the program imple-
ments the correct algorithm, and will not (un)intentionally
leak secrets. Similarly, for a Grid computing project, re-
vealing details of the computation, as an enticement to
users to donate their spare computational capacity, may be
beneficial. Declassification can also occur as a side effect of
the computation, for example when the result—which can
reveal significant amounts of information about its inputs,
depending on πm—is shared with an untrusted principal.
Principals must evaluate the global policy carefully, before
enrolling, to understand where results will flow to, and
what they may say about any secrets. Though Veracruz
can be used to design privacy-preserving computations, not
every computation is necessarily privacy-preserving.



5

Once a TEE is spawned, with the Veracruz runtime
loaded, the program and data owners establish a TLS con-
nection, using a modified TLS handshake (see §3.1), with
the TEE T⃝. This handshake assures the principals that the
TEE is, in fact, executing the Veracruz runtime specified in
the global policy, and that the TEE is the other end of their
TLS connection. Once this TLS channel is established, the
program and data providers use it to provision their secrets
directly into the TEE, 1⃝ and 2⃝, making use of an untrusted
bridge, U⃝, on the delegate’s machine but outside of the
TEE, to forward encrypted TLS data into the TEE itself. To
the delegate, communication via this bridge is immutable
and opaque—except for sizing and timing information that
TLS leaks—unless they can subvert TLS. TLS configuration
options, including permitted TLS ciphersuites, are also pub-
licly detailed in the global policy.

Provisioned secrets are stored as files in the VFS, S⃝.
The paths of data inputs, Di, are specified in the global
policy, G⃝, as the program πm needs to know where its
inputs are stored for processing when the computation
starts executing. Similarly, each program is also stored as
a file, read from the filesystem during loading.

A result receiver may now request the result of the
computation, triggering the Veracruz runtime to load the
provisioned program, π, into the execution engine, S⃝, and
either compute the result πm(D1, . . . , DN ), terminate with
an error code, or diverge. Assuming a result is computed, it
is stored by the program as a file in the filesystem at a path
specified by the global policy. The runtime reads this path,
or fails with an error if the program did not write a result
there, and makes the result retrievable securely, via TLS, to
all result receivers, 4⃝. The computation is now complete.

3.1 Attestation
Given Veracruz supports multiple isolation technologies,
this poses a series of attestation-related problems:
- Complex client code: Client software used to delegate a
computation to Veracruz must support multiple attestation
protocols, complicating it. As support for more TEEs are
added—with new attestation protocols—this client code
must be updated to interact with the new class of TEE.
- Leaky abstraction: Veracruz abstracts over TEEs, allow-
ing principals to delegate computations without worrying
about the programming or attestation model associated with
any one TEE. Forcing clients to switch attestation protocols,
depending on the TEE, breaks this uniformity.
- Potential side-channel: For some attestation protocols, each
principal in a Veracruz computation must refer attestation
evidence to an external attestation service.
- Attestation policy: Principals may wish to disal-
low computations on delegates with particular isola-
tion technologies. These policies may stem from security
disclosures—vulnerabilities in particular firmware versions,
for example—changes in business relationships, or geopo-
litical trends. Given our support for heterogeneous isola-
tion technologies, being able to declaratively specify who
or what can be trusted becomes desirable. Without the
attestation service taking policy into account this role is
inevitably pushed onto client code—problematic if policy
changes, as inevitably more software needs updating than
the centralized attestation service.

In response, we introduce a proxy attestation service
(PAS) for Veracruz, X⃝, open-source and auditable by any-
one, with associated server and management software.
Though PAS must be trusted by all principals together
with the existing attestation infrastructure for a particular
TEE in deployment, it is a practical solution to the listed
problems. Whilst not protected by a TEE, in principle PAS
could be, and doing so would allow principals to check
its authenticity before trusting it. Implementing this would
be straightforward; for now we assume that the attestation
service is trusted, implicitly. The PAS first uses onboarding
to enroll a TEE hosting Veracruz, after which the TEE can act
as a TLS server for principals participating in a computation.
We describe these steps, referring to Fig. 2.
Onboarding a TEE: The PAS maintains a root CA key (pub-
lic/private key pair) and a Root CA certificate containing
the root CA public key, signed by the root CA private key.
This root CA certificate is included in the global policy file
of any computation using that PAS. Then:

1) Upon initialization inside the TEE, the Veracruz runtime
V⃝ generates an asymmetric key pair, along with a Cer-

tificate Signing Request (CSR) [12] for that key pair.
2) The Veracruz runtime performs the platform’s native

attestation request O1⃝ with the PAS acting as challenger
X⃝. These native attestation flows provide fields for user-

defined data, which we fill with a cryptographic hash
(SHA-256) of the CSR, which cryptographically binds
the CSR to the attestation data, ensuring that they both
come from the same TEE. The Veracruz runtime sends
the CSR to the PAS along with the attestation evidence.

3) The PAS authenticates the attestation evidence received
via the native attestation flow, O2⃝. Depending on the
protocol, this could be as simple as verifying signatures
via a known-trusted certificate, or by authenticating the
received evidence using an external attestation service.

4) The PAS computes the hash of the received CSR and
compares it against the contents of the user-defined field
of the attestation evidence. If it matches, it confirms that
the CSR is from the same TEE as the evidence.

5) The PAS converts the CSR to an X.509 Certificate con-
taining a custom extension capturing details about the
TEE derived from the attestation process, including a
hash of the Veracruz runtime executing inside the TEE
(and optionally other information about the platform on
which the TEE is executing). The certificate is signed by
the private component of the PAS’s Root CA key.

6) The PAS returns the generated certificate to the Veracruz
runtime inside the TEE.

In typical CA infrastructure, a delegated certificate is
revoked by adding it to a Certificate Revocation List, checked
by clients before completing a TLS handshake. This scheme
is possible with our system, but we elected to set the expiry
in the TEE’s certificate to a relatively short time in the future,
so that the PAS can limit the amount of time a compromised
TEE can be used in computations.
Augmented TLS handshake: After a TEE is onboarded, O1⃝, a
principal can attempt to connect to it, using an augmented
TLS handshake, R⃝. In response to the “Client Hello” mes-
sage sent by the principal, the TEE responds with a “Server
Hello” message containing the certificate that the TEE re-



6

P⃝ Principals

V⃝ Isolate
key pair: (kpub, kpri)

X⃝ Proxy Attestation Service
root key pair: (rpub, rpri)

Native
Attestation

Service

O2⃝ Native attestation

O1⃝ Native attestation request on a fresh challenge
and certificate signing request on key pair k

O3⃝ X.509 Certificate for the isolate
O4⃝ X.509 Certificate for the isolate

R⃝TLS Handshake

Figure 2: A schematic diagram of the Veracruz attestation service onboarding and challenge protocols

ceived from the PAS, described above. The principal then
verifies if the certificate matches the PAS root CA certificate
contained within the global policy. Assuming successful
verification, the principal then checks the data contained
in the custom extension, the Veracruz runtime hash, against
the expected values in the global policy. If they match, the
principal continues the TLS handshake, confident that it is
talking to a Veracruz runtime inside of a supported TEE.

The PAS solves all problems described above. Client
code is provided with a uniform attestation interface—the
CA-based attestation flow described above —independent of
the underlying isolation technology in use, with no prin-
cipals in a computation communicating with a native at-
testation service. Thus, the native attestation service knows
that software was started in a supported TEE, but it has
no knowledge of the identities or number of principals.
Finally, the global policy represents the only source of policy
enforcement, with the authors able to declaratively describe
who and what they are willing to trust, with a princi-
pal’s client software taking this information into account
when authenticating or rejecting an attestation token. Our
attestation process is also designed to accommodate client
code running on embedded microcontrollers—e.g., Arm
Cortex®-M3 devices—with limited computational capacity,
constrained memory and storage (often measured in tens of
kilobytes), and which tend to be battery-powered with lim-
ited network capacity. Communication with an attestation
service is therefore cost- and power-prohibitive, and using
a certificate-based scheme allows constrained devices to
authenticate an TEE running Veracruz efficiently. To validate
this, we developed Veracruz client code for microcontrollers,
using the Zephyr embedded OS. Our client code is 9 kB on
top of the mbedtls stack, generally required for secure com-
munication anyway. Using this, small devices can offload
large computations safely to an attested Veracruz instance.

3.2 Programming model

Wasm [3] is designed as a sandboxing mechanism for use
in security-critical contexts, designed to be embeddable, is
widely supported as a target by a number of high-level
programming languages, and has high-quality interpreters
and JITs available. We use Wasm as our executable for-
mat, supporting both interpretation and JIT execution, with
the strategy specified in the global policy. Veracruz uses
Wasm to protect the delegate’s machine from the execut-
ing program, to provide a uniform programming model,
to constrain the behavior of the program, and to act as a
portable executable format for programs, abstracting away
the underlying instruction set architecture.

A program needs a way of reading inputs from data
providers and writing outputs for the result receivers.

However, we would like to constrain the behavior of the
program: a program dumping one of its secret inputs to
stdout on the host’s machine would break the privacy
guarantees that Veracruz aims to provide, for example.
Partly for this reason, we have adopted the WebAssembly
System Interface (Wasi) as our programming model, which
can be thought of as “Posix for Wasm”, providing a sys-
tem interface for querying Veracruz’s in-memory filesystem,
generating random bytes, and similar. (In this light, the
Veracruz runtime can be seen as a simple operating system
for Wasm.) By adopting Wasi, one may also use existing
libraries and standard programming idioms when targeting
Veracruz. Wasi uses capabilities and a program may only
use functionality which it has been explicitly authorized
to use. The program, πm’s, capabilities are specified in the
global policy, and typically extend to reading and writing
inputs and outputs, and generating random bytes.

3.3 Ad hoc acceleration

Many Veracruz applications make use of common, compu-
tationally intense, or security-sensitive routines: e.g., cryp-
tography or (de)serialization. It is beneficial to provide a
single, efficient, and correct implementation for common
use. We introduced “native modules” to accelerate com-
mon tasks, and which are linked into the Veracruz run-
time and invoked from Wasm programs, although they
increase the size of runtime. In benchmarking a module
accelerating (de)serialization of Json documents from the
pinecone binary format we observe a 35% speed-up when
(de)serializing a vector of 10,000 random elements (238s
native vs. 375s Wasm). More optimization will further boost
performance. Given the ad hoc nature of these accelerators,
we opt for an interface using special files in the Ver-
acruz filesystem, with modules invoked by Wasm programs
writing-to and reading-from these files, reusing existing
programming idioms and filesystem support in Wasi.

3.4 Trust and threat model

Trusted Computing Base: The Veracruz TCB includes the
TEE, the Veracruz runtime, and the implementation of the
Veracruz PAS. The host of the PAS must also be trusted by
all parties, as must the native attestation services or keys
in use. The correctness of the various protocols in use—
TLS, platform-specific native attestation, and PSA attesta-
tion [13]—must also be trusted. Purely cryptographic tech-
niques merely rely on a trustworthy implementation, and
the correctness of the primitive itself. As demonstrated in
§4, Veracruz provides a degree of efficiency and practicality
currently out of reach for purely cryptographic techniques,
at the cost of this larger TCB.



7

The Wasm execution engine must also be trusted to
correctly execute and sandbox a binary. Recent techniques
have been developed that use post-compilation verification
to establish this trust [14]—we discuss ongoing experiments
in this area in §5. Memory issues have been implicated in
attacks against TEEs in the past [15]—we write Veracruz in
Rust in an attempt to avoid this, with the compiler therefore
also trusted. Veracruz does not defend against denial-of-
service attacks: the delegate is in charge of scheduling ex-
ecution, and liveness guarantees are impossible to uphold.
A malicious principal can therefore deny others access to a
computation’s result, or block a computation from starting.

Different isolation technologies defend against different
classes of attacker, and as Veracruz supports multiple tech-
nologies we must highlight these differences explicitly.

AWS Nitro Enclaves protect computations from the AWS
customer running the EC2 instance associated with the
TEE. While AWS assures users that TEEs are protected
from employees, this is difficult to validate (and, as silicon
manufacturer, AWS and its employees must be trusted).
Our TCB therefore contains the Nitro hardware, Linux host
used inside the TEE, the attestation infrastructure for Nitro
Enclaves, and AWS employees with potential access.

For Arm CCA Realms only the Realm Management Mon-
itor (RMM), a separation kernel isolating Realms from each
other, has access to the memory of a Realm, other than the
software executing in the Realm itself. Realms are protected
from the non-secure hypervisor, and any other software
running on the system other than the RMM, and will be
protected against a class of physical attacks using memory
encryption. Our TCB therefore contains the RMM, the sys-
tem hardware, Linux host inside the Realm, along with the
attestation infrastructure for Arm CCA.

For IceCap our TCB includes seL4, bolstered by a body of
machine-checked security and functional correctness proofs
(at present these do not cover the EL2 configuration for
AArch64). For a typical hypervisor deployment of seL4, the
SMMU is the only defence against physical attacks.
Threats and mitigations: Communication between princi-
pals and the Veracruz runtime is protected by a modi-
fied TLS protocol, preventing data from being viewed or
modified in transit to the runtime. Additionally, the partici-
pants must authenticate themselves to the Veracruz runtime
with self-signed client certificates that are included in the
global policy file. This prevents unauthorized parties from
impersonating principals. The server certificate presented
to the principals in the TLS handshake contains a custom
extension that contains the SHA256 hash of the Veracruz
runtime loaded in the TEE. The client check this hash value
against the value embedded in the global policy file to
ensure they are communicating with a valid instance of the
Veracruz runtime.

Prior to provisioning data into the runtime, principals
request a hash of the loaded Wasm program from the
runtime, and compare it against a value embedded in the
global policy file. This ensures that only Veracruz runtimes
executing the chosen program may receive the principal’s
confidential data. TEEs protect the data and computation
once it is provisioned into the runtime.

For Arm CCA, software outwith the root of trust has no
mapping from virtual address to hardware address to the

N
at

iv
e

Ve
ra

cr
uz

W
as

m
tim

e

0

5,000

10,000

15,000

1
4
3
.4

2
7
6

4
4
6
.6

8
,0

0
2

1
7
,0

5
0

1
7
,0

6
0

0
.1

6
2
2

0
.2

3
4
8

0
.2

1
4
4

Ex
ec

.t
im

e
(m

s)

Load Data

Training

Save Model

N
at

iv
e

Ve
ra

cr
uz

W
as

m
tim

e

0

1,000

2,000

3
4
9
.3

4
2
1
.4

4
2
4
.9

6
1
1
.5

2
,5

1
4

2
,5

1
5

1
6
.5

8

4
.9

7
7

2
5
.7

8

Load Model&Data

Detection

Save Result

N
at

iv
e

Ve
ra

cr
uz

W
as

m
tim

e

0

0.2

0.4

0.6

0
.1

6

0
.2

6

0
.2

7

0
.0

8

0
.1

4

0
.1

8

ONNX

Save Model

Figure 3: Execution time of the DL examples, classifier
training (L), inference (M), ONNX model aggregation (R)

TEE’s memory, and therefore no ability to modify or read the
TEE’s data. The TEE’s DRAM is also encrypted, so snooping
the system buses by the operator will not leak secrets. Some
CCA platforms may also provide authenticated encryption,
which would prevent modification by the system operator.
For Icecap, software outside of the root of trust has no
ability to access TEE memory. However, there is no DRAM
encryption, so the system operator could probe the system
buses to read or modify the TEE memory. As discussed,
AWS asserts that policies preventing access to customer data
are enforced, though this is impossible to verify.

4 EVALUATION

This section uses the following test platforms: Intel Core
i7-8700, 16GiB RAM, 1TB SSD (Core i7, henceforth);
c5.xlarge AWS VM, 8GiB RAM, EBS (EC2, henceforth);
Raspberry Pi 4, 4GiB RAM, 32GB µSD (RPi4, henceforth).
We use GCC 9.30 for x86-64, GCC 7.5.0 for AArch64, and
Wasi SDK-14.0 with LLVM 13.0 for Wasm. Our evaluation
shows that Veracruz can be deployed to tackle real-world
use-cases (§4.1, §4.2), and has a good performance (§4.3).

4.1 Case-study: deep learning

Training datasets, algorithms, and learnt models may be
sensitive IP and the learning and inference processes are
vulnerable to malicious changes in model parameters that
can cause a negative influence on a model’s behaviors that
is hard to detect (see e.g., [16]). We present two case-studies
in protecting deep learning (DL) applications: privacy-
preserving training and inference, and privacy-preserving
model aggregation service, a step toward federated DL. We
use Darknet in both cases, and the Open Neural Network eX-
change (ONNX) as the aggregation format. We focus on the
execution time of training, inference, and model aggregation
on the Core i7 test platform.

In the training and inference case-study, the program re-
ceives datasets from the respective data providers and a pre-
learnt model from a model provider, and thereafter starts
training or inference, protected inside Veracruz, with the
results—the trained model or prediction—made available
to a result receiver. In the model aggregation case-study,
clients conduct local training with their favorite DL frame-
works, convert the models to ONNX, and provision these
derived models into Veracruz. The program then aggregates



8

0

1,000

2,000 1
,5

9
1

2
,2

2
1

2
,2

1
4

2
,3

1
7

Ex
ec

.t
im

e
(s

)

Native Wasmtime Veracruz-Linux Veracruz-Nitro (L)/
Veracruz-IceCap (R)

0

200

400

600

800

7
7
3

8
4
8

8
5
1

8
8
0

Figure 4: VOD execution time on EC2 (L) and RPi4 (R)

the models, making the result available to all clients. By
converting to ONNX, we support a range of local training
frameworks including PyTorch, Tensorflow, and Darknet.

We trained a LeNet [17] on MNIST [17], a dataset of
60,000 training and 10,000 validation images of handwritten
digits. Each image is 28×28 pixels and less than 1KiB; we
used a batch size of 100 in training, obtaining a trained
model of 186KiB. We take the average of 20 trials for
training on 100 batches (hence, 10,000 images) and ran in-
ference on one image. For aggregation, we use three copies
of this Darknet model (186KiB), obtaining three ONNX
models (26KiB), performing 200 trials for aggregation, as
aggregation time is significantly less. Fig. 3 presents results.

For all DL tasks we observe the same execution time
between Wasmtime and Veracruz, as expected, with both
around 2.1–4.1× slower than native CPU execution, likely
due to more aggressive code optimization available in
native compilers. Recall that Veracruz use Wasmtime as
its JIT engine. However, the similarity between Wasmtime
and Veracruz diverges for file operations such as loading
and saving of model data. Loading data from disk is 1.2–
3.1× slower when using Wasmtime compared to executing
natively. However, I/O in Veracruz is usually faster than
Wasmtime, and sometimes faster than native execution,
e.g., when saving images in inference. This is likely due
to Veracruz’s in-memory filesystem exhibiting a faster read
and write speed transferring data, compared to the SSD
of the test machine, while Wasmtime uses the filesystem
provided by the operating system (Linux in our experiment)
by default, which accesses both memory and disk.

4.2 Case-study: video object detection

We have used Veracruz to prototype a Confidential FaaS, run-
ning on AWS Nitro Enclaves and using Kubernetes. In this
model, a cloud infrastructure or other delegate initializes an
TEE that contains only the Veracruz runtime and provides
an appropriate global policy file. Confidential functions are
registered in a Confidential Computing Function-as-a-Service
(CCFaaS) component, which acts as a registry for clients
wishing to use the service and which collaborates, on behalf
of clients, with a Veracruz as a Service (VaaS) component
which manages the lifetime of any spawned Veracruz in-
stances. Together, the CCFaaS and VaaS components draft
policies and initialize Veracruz instances, while attestation
is handled by clients, using the PAS.

Building atop this infrastructure, we applied Veracruz
in a full end-to-end encrypted video object detection flow
(VOD, see Fig. 5), demonstrating that Veracruz can be ap-
plied to industrially-relevant use-cases: here, a video camera

� 
S3 buckets

 + ¤
decryption
7−−−−−→


decode and obj. detection
7−−−−−−−−−−−−−→

A Veracruz-Nitro Instance

CCFaaS VaaS




¤



Request video object detection service

Manage

µ µ
µ

TLS

TLS

FaaS infrastructure

Figure 5: Video object detection case-study

manufacturer wishes to offer an object detection service
to customers while providing believable guarantees that
they cannot access customer video. Encrypted video clips,
originating from an IoTeX Ucam video camera, are stored
in an AWS S3 bucket. The encryption key is owned by the
camera operator and perhaps generated by client software
on their mobile phone or tablet. Independently, a video
processing and object detection function, compiled to Wasm,
is registered with the CCFaaS component which takes on the
role of program provider in the Veracruz computation. This
function makes use of the Cisco openh264 library as well
as the Darknet neural network framework and a prebuilt
YOLOv3 model, discussed in §4.1, for object detection.

Upon the camera owner’s request, the CCFaaS and VaaS
infrastructure spawn a new AWS Nitro Enclave loaded
with the Veracruz runtime, configured using an appropriate
global policy that lists the camera owner as having the
data provider and result receiver roles. The confidential
FaaS infrastructure forwards the global policy to the camera
owner, where it is analyzed by their client software, with the
camera owner thereafter attesting the AWS Nitro Enclave
instance. If the policy is acceptable, and attestation succeeds,
the camera owner securely connects to the spawned TEE,
containing the Veracruz runtime, and securely provisions
their decryption key using TLS, as data provider. The en-
crypted video clip is also provisioned into the TEE, by an
AWS S3 application also listed in the global policy as a data
provider, and the computation can start. Once complete,
metadata containing bounding boxes of objects detected in
the video can be securely retrieved by the camera owner via
TLS, as result receiver, for interpretation by their client.

This FaaS infrastructure preserves desirable cloud appli-
cation characteristics: the computation is on-demand and
scalable, and allows multiple instances of Veracruz, running
different functions, to be executed concurrently. Only the
AWS S3 application, the camera owner’s client application,
and the video decoding and object detection function are
specific to this use-case. All other modules are generic,
allowing other applications to be implemented. Moreover,
no user credentials or passwords are shared with the FaaS
infrastructure in realizing this flow, beyond the name of the
video clip to retrieve from the AWS S3 bucket and a one-
time access credential for the AWS S3 application—keys are
only shared with Veracruz inside an attested TEE.

We benchmark by passing a 1920×1080 video to the
VOD program, which decodes frame by frame, converts,
downscales, and passes frames to the ML model. We com-
pare four configurations on two different platforms:

• On EC2, a native x86-64 binary on Amazon Linux;
a Wasm binary under Wasmtime-0.27; a Wasm binary



9

Description Time (ms)
PAS start 7
Onboard new Veracruz TEE 3122
Request attestation message 54
Initialization of Veracruz TEE 1
Check hashes (including TLS handshake) 184
Provision object detection program 798
Provision data (model, video) 282323

Table 2: Overheads for VOD on AWS Nitro Enclaves

inside Veracruz as a Linux process; a Wasm binary inside
Veracruz on AWS Nitro Enclaves. The video is 240 frames
long and fed to the YOLOv3-608 model.

• On RPi4: a native AArch64 binary on Ubuntu 18.04 Linux;
a Wasm binary under Wasmtime-0.27; a Wasm binary
inside Veracruz as a Linux process; a Wasm binary inside
Veracruz on IceCap. Due to memory limits the video is
240 frames long and fed to the YOLOv3-tiny model.

We take the native x86-64 configuration as our baseline,
and present average runtimes for each configuration, along
with observed extremes, in Fig. 4.
EC2 results: Wasm (with experimental SIMD support in
Wasmtime) has an overhead of ∼39% over native; most
cycles are spent in matrix multiplication, which the native
compiler can better vectorize than Wasmtime. The majority
of execution time is spent in neural network inference,
rather than video decode or downscaling. Since execution
time is dominated by the Wasm execution, Veracruz over-
head is negligible. A ∼5% performance discrepancy exists
between Nitro and Wasmtime, which could originate from
our observation that Nitro is slower at loading data into an
enclave, but faster at writing, though Nitro runs a different
kernel with a different configuration, on a separate CPU,
making this hard to pinpoint. Deployment overheads for
Nitro are presented in Table 2, showing a breakdown of
overheads for provisioning a new Veracruz instance.
RPi4 results: The smaller ML model significantly improves
inference performance at the expense of accuracy. Wasm has
an overhead of ∼10% over native, smaller than the gap
on EC2, potentially due to reduced vectorization in GCC
for AArch64. Veracruz overhead is again negligible, though
IceCap induces an overhead of ∼3% over Veracruz-Linux,
approximately matching the overhead of ∼2% for CPU-
bound workloads measured in Fig. 1, and explained by extra
context switching through trusted resource management
services during scheduling operations.

Using “native modules”, as in §3.3, explicit support
for neural network inference could be added to Veracruz,
though our results suggest a max ∼38% performance boost
by pursuing this, likely less due to the costs of marshalling
data between the native module and Veracruz file system.
For larger performance boosts, dedicated ML acceleration
could be used, requiring support from the Veracruz runtime,
though establishing trust in accelerators outside the TEE is
hard, with PCIe attestation still a work-in-progress.

4.3 Further performance comparisons

PolyBench/C microbenchmarks: We further evaluate the per-
formance of Veracruz on compute-bound programs using
the PolyBench/C suite (version 4.2.1-beta), a suite of small,

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
he

at
-3

d
ja

co
bi

-1
d

ja
co

bi
-2

d
lu

dc
m

plu

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk

1×

1.5×

2×

Wasmtime Veracruz-Linux Veracruz-Nitro

gm
ea

n

Figure 6: Relative execution time (vs. native) of Poly-
Bench/C (large) on EC2. gmean is geo. mean of results

in
or

de
r

ra
nd

om

0

5

10

15

6
.6

7

6
.5

3

1
1
.9

7

1
1
.2

71
6
.4

0

1
5
.1

3

1
6
.5

3

1
5
.2

6

G
iB

/s

in
or

de
r

ra
nd

om

0

0.2

0.4

0.6 0
.5

7

0
.5

9

0
.5

2

0
.5

2

0
.5

5

0
.5

4

0
.5

4

0
.5

4

Linux
tmpfs

Veracruz
copy

Veracruz
no-copy

Veracruz
no-copy+soo

in
or

de
r

ra
nd

om

0

0.2

0.4

0.6

0
.6

1

0
.6

1

0
.6

1

0
.6

3

0
.6

7

0
.6

5

0
.6

7

0
.6

5

Figure 7: VFS bandwidth: read (L), write (M) and update (R)

simple computationally-intensive kernels. We compare exe-
cution time of four different configurations on the EC2 in-
stance running Amazon Linux 2: a native x86-64 binary; a
Wasm binary under Wasmtime-0.27; a Wasm binary under
Veracruz as a Linux process; and a Wasm binary executing
under Veracruz in an AWS Nitro Enclave. We take x86-64
as our baseline, and present results in Fig. 6. Wasmtime’s
overhead against native CPU execution is relatively small
with a geometric mean of ∼13%, though we observe that
some test programs execute even faster under Wasmtime
than when natively compiled. Again, we compile our test
programs with Wasmtime’s experimental support for SIMD
proposal, though this boosts performance for only a few
programs. Veracruz-Linux doesn’t exhibit a visible over-
head compared to Wasmtime, which is expected as most
execution time is spent in Wasmtime, and the presence
of the Veracruz VFS is largely irrelevant for CPU-bound
programs. Veracruz-Nitro exhibits a small but noticeable
overhead (∼3%) compared to Veracruz-Linux, likely due to
the reasons mentioned in §4.2.
VFS performance: We evaluate Veracruz VFS I/O perfor-
mance, as discussed in §3.2. Performance is measured by
timing common granular file-system operations and divid-
ing by input size, to find the expected bandwidth.

Results were gathered on Core i7 test platform with zero
swap size so that measurements would not be invalidated
by physical disk access (see Fig. 7). Here, read denotes band-
width of file read operations, write denotes bandwidth of
file write operations with no initial file, and update denotes
bandwidth of file write operations with an existing file.
We use two access patterns, in-order and random, to avoid
measuring only file-system-friendly access patterns. All ran-
dom inputs, for both data and access patterns, used repro-
ducible, pseudorandom data generated by xorshift64 to
ensure consistency between runs. All operations manipulate
a 64MiB file with 16KiB buffer size—in practice, we expect



10

most files will be within an order of magnitude of this size.
We compare variations of our VFS against Linux’s

tmpfs, the standard in-memory filesystem for Linux. Ve-
racruz copy moves data between the Wasm’s sandboxed
memory and the VFS through two copies, one at the Wasi
API layer, and one at the internal VFS API layer. Ver-
acruz no-copy improved on this by performing a single
copy directly from the Wasm’s sandboxed memory into
the destination in the VFS. This was made possible thanks
to Rust’s borrow checker, which is able to express the
temporarily shared ownership of the Wasm’s sandboxed
memory without sacrificing memory or lifetime safety. In
theory this overhead can be reduced to zero copies through
memmap, however this API is not available in standard Wasi.
Veracruz no-copy+soo is our latest design, extending the
no-copy implementation with a small-object optimization
(SOO) iovec implementation—a Wasi structure describing
a set of buffers containing data to be operated on, which
for the majority of operations contain a reference to a single
buffer. Through this, we inline two or fewer buffers into
the iovec structure itself, completely removing memory
allocations from the read and write path for all programs
we tested with. Performance impact is negligible, however.

Being in-memory filesystem, the internal representation
is relatively simple: directories and a global inode table
are implemented using hash tables, with each file a vec-
tor of bytes. While naı̈ve, these data-structures have seen
decades of optimization for in-memory performance, and
even sparse files perform efficiently due to RAM over-
commitment by the runtimes. However, we were still sur-
prised to see very close performance between Veracruz and
tmpfs, with Veracruz nearly doubling the tmpfs perfor-
mance for reads, likely due to the overhead of syscalls nec-
essary to communicate with tmpfs in Linux. (Unfortunately
tmpfs is deeply integrated into the Linux VFS layer, so it is
not possible to compare with tmpfs in isolation.)

Both Veracruz and tmpfs use hash tables to store direc-
tory information, with the file data-structure and memory
allocator representing significant differences. In Veracruz we
use byte vectors backed by the runtime’s general purpose
allocator, whereas tmpfs uses a tree of pages backed by the
Linux VFS’s page cache, acting as a cache-aware fixed-size
allocator. We expect this page cache to have much cheaper
allocation cost, at the disadvantage of storing file data in
non-linear blocks of memory—observable in the difference
between the write and update measurements. For write,
tmpfs outperforms Veracruz due to faster memory alloca-
tions and no unnecessary copies, while update requires no
memory allocation, and has comparable performance.
Fully-homomorphic encryption: An oft-suggested use-case
for fully-homomorphic encryption (FHE) is protecting del-
egated computations. We compare Veracruz against SEAL,
an FHE library, in computing a range of matrix multipli-
cations over square matrices of various dimensions. Both
algorithms are written in C, with floating point arithmetic
replaced by the SEAL multiplication function for use with
FHE. Our results (see Fig. 8) demonstrate that FHE remains
impractical, even for simple computations.
Teaclave: Apache Teaclave [18] is a privacy-preserving
FaaS infrastructure using Intel SGX, supporting Python and
interpreted Wasm with a custom programming model. We

100 200

100

102

104

106

2
.0

4
·
1
0
4

3
.5

4
·
1
0
4

5
.5

1
·
1
0
4

8
.2

7
·
1
0
4

1
.1

7
·
1
0
5

1
.6

1
·
1
0
5

2
.1

6
·
1
0
5

2
.8

0
·
1
0
5

3
.6

0
·
1
0
5

4
.5

2
·
1
0
5

5
.5

6
·
1
0
5

6
.8

5
·
1
0
5

8
.5

2
·
1
0
5

1
.0

1
·
1
0
6

1
.1

9
·
1
0
6

1
.3

9
·
1
0
6

1
.6

3
·
1
0
6

1
.8

7
·
1
0
6

2
.1

4
·
1
0
6

2
.4

3
·
1
0
6

2
.0

1
·
1
0
4

2
.8

8
·
1
0
4

3
.9

0
·
1
0
4

5
.0

6
·
1
0
4

6
.4

0
·
1
0
4

7
.9

0
·
1
0
4

9
.6

7
·
1
0
4

1
.1

5
·
1
0
5

1
.3

8
·
1
0
5

1
.6

6
·
1
0
5

1
.9

0
·
1
0
5

2
.1

9
·
1
0
5

2
.6

9
·
1
0
5

3
.1

3
·
1
0
5

3
.6

3
·
1
0
5

4
.1

1
·
1
0
5

4
.5

6
·
1
0
5

5
.0

6
·
1
0
5

5
.5

7
·
1
0
5

6
.0

8
·
1
0
5

1
.1

8
1
.9

9
3
.0

3
4
.4

5
6
.4

0
8
.5

1
1
1
.6

2
1
4
.9

7
1
8
.4

7
2
3
.8

2
2
8
.8

1
3
5
.6

9
4
2
.6

2
5
2
.1

6
6
6
.3

6
7
3
.0

8
8
2
.9

7
9
6
.5

8
1
0
5
.4

4
1
2
3
.0

2

Dimension of square matrix

Ex
ec

.t
im

e
(m

s)

FHE computation

FHE encryption

Veracruz computation

Figure 8: SEAL and Veracruz computation performance

2m
m

3m
m ad

i
bi

cg
du

rb
in

fd
td

-2
d

fl-
w

ar
sh

al
l

ge
m

m
ja

co
bi

-1
d lu

lu
dc

m
p

m
vt

se
id

el
-2

d
sy

rk

0

5

10

15

Ex
ec

.t
im

e
(s

)

Veracruz-Linux Veracruz-Nitro Teaclave-Simulation Teaclave-SGX

Figure 9: Execution times of Veracruz and Apache Teaclave

compare the performance of Teaclave running under Intel
SGXv1 against Veracruz running as a Linux process, both on
Core i7, and Veracruz on AWS Nitro enclaves on EC2. This is
admittedly an imperfect comparison, due to significant dif-
ferences in design, isolation technology, Wasm runtime, and
hardware between the two. We run the PolyBench/C suite
with its mini dataset—Teaclave’s default configuration er-
rors for larger datasets—and measure end-to-end execution
time, which includes initialization, provisioning, execution
and fetching the results, which we present in Fig. 9. While
Veracruz has better performance than Teaclave when exe-
cuting Wasm—with Veracruz under AWS Nitro exhibiting a
mean 2.11× speed-up compared to Teaclave in simulation
mode, and faster still than Teaclave in SGXv1—the fixed
initial overhead of Veracruz, ∼4s in Linux and ∼2.7s in
AWS Nitro, dominates the overall overhead in either case.
At the time of writing, Intel SGXv2 hardware is available on
Microsoft Azure though non-trvial to deploy applications
on top, and it is possible that Teaclave’s performance would
benefit from SGXv2.

5 CLOSING REMARKS

Veracruz is a framework for designing and deploying
privacy-preserving delegated computations among a group
of mutually mistrusting principals, using TEEs as a “neu-
tral ground” to protect computations from prying or in-
terference. Veracruz supports a mix of hardware-backed
Confidential Computing technologies—such as AWS Nitro
Enclaves and Arm Confidential Computing Architecture
Realms—and pragmatic “software TEEs” via IceCap, using
the high-assurance seL4 microkernel, on Armv8-A plat-
forms without any other explicit support for Confidential



11

Computing, to provide strong isolation guarantees. Ver-
acruz and IceCap provide a uniform programming and
attestation model across emerging and “legacy” hardware
platforms, easing the deployment of delegated computa-
tions. Both are open-source1, with Veracruz adopted by the
Confidential Computing Consortium.
Related work TEEs have been used to protect a zoo of
computations of interest, e.g., ML [19] and genomic com-
putations [20], and have been used to emulate or speed
up cryptographic techniques such as secure multi-party
computations [21]. These can be seen as use-cases of Ve-
racruz. Cloud providers, e.g., AWS and Microsoft Azure,
now provide TEEs solutions. Veracruz can simplify the
deployment model to TEEs in Cloud Computing. A body of
work related to Grid Computing (see e.g., [22], [23], [24]) has
also explored similar themes to Veracruz and other related
Confidential Computing projects.

Previous work [25] suggested a framework similar to
Veracruz. This was never implemented. Google Oak, Profian
Enarx, Apache Teaclave, Inclavare Containers [26], Fortanix
Confidential Computing Manager and SCONE [27] are similar
to Veracruz—all provide user-friendly interfaces for TEEs—
though significant differences exist. Oak’s emphasis is in-
formation flow control, while Enarx, Fortanix, Inclavare,
and SCONE protect the integrity of legacy computations,
either requiring recompilation of source code, or using
containerized workloads, respectively. Moreover, SCONE,
Fortanix, and Inclavare’s main focus is deployment on SGX,
while Veracruz is designed to achieve portability across
multiple TEE-like technologies. Users of Inclavare, however,
can choose between multiple deployment strategies on SGX,
including the small WAMR Wasm runtime, or the Occlum
library OS. The combination of a proxy attestation service
and certificate-based attestation protocol in Veracruz, espe-
cially suitable for clients on resource-constrained devices,
is also unique, though Inclavare does also offer a uniform
attestation process. Lastly, Apache Teaclave is the most sim-
ilar project to Veracruz, and also uses Wasm for portability
reasons. However, as discussed in §4, we perform better.

Protected KVM (pKVM) is an attempt to minimize the
TCB of KVM, enabling virtualization-based confidential
computing on mobile platform, similar to IceCap. pKVM,
with an EL2 kernel specifically designed for the task, may
have higher performance than IceCap, but will not benefit
from the formal verification effort invested in seL4.

OPERA [28] places a proxy between client code and the
Intel Attestation Service, exposing the same EPID protocol
to clients as the web-service exposes. The PAS exposes a
potentially different protocol to client code, compared to
the native protocol, due to the variety of TEEs Veracruz
supports. Intel’s Data Center Attestation Primitives (DCAP)
is also similar though specific to Intel SGX.
Ongoing and future work The PAS, currently signs each
generated certificate with the same key, though could sign
certificates for different isolation technologies with different
keys, each associated with a different root CA certificate.
A global policy could then choose which technology to
support based on the selection of root CA certificate em-

1. Veracruz: https://github.com/veracruz-project/veracruz, and
IceCap: https://gitlab.com/arm-research/security/icecap/icecap

bedded in the policy, and if multiple isolation technologies
were to be supported, more than one root CA certificate
could be embedded. The PAS could also maintain multiple
Root CA certificates, arranged into a “decision tree of cer-
tificates”, with the server choosing a CA certificate to use
when signing the TEE’s certificate from the tree, following
a path from the root described by characteristics of the
TEE itself (e.g., name of the manufacturer, whether memory
encryption is supported, and so on). Again, the certificate
associated with the security profile of the desired isolation
technology can be embedded in the policy.

We intend to pragmatically bound some runtime prop-
erties of Veracruz programs. Cryptography is perhaps most
sensitive to timing attacks, and we aim to provide a limited
defense by supplying a constant-time cryptography imple-
mentation via the native module facility (see §3.3). We also
aim to explore the use of a statically verified, constant-
time virtual machine to gives users the option to stati-
cally verify timing properties of their programs—an area
of significant recent academic interest—though likely at the
cost of limiting their program to constant-time constructs,
which is intractable for general-purpose programming. With
FaCT [29] we could provide flexible, verifiably constant-
time components such as virtual machines or domain spe-
cific functions, while the not-yet-standardised CT-Wasm [30]
extension for Wasm also provides verifiable, constant-time
guarantees as a set of secrecy-aware types and instructions.

We are also continuing work on statically verifying the
Software Fault Isolation (SFI) safety of sandboxed applica-
tions. SFI systems, such as Wasm, add runtime checks to
loads, stores, and control flow transfers to ensure sandboxed
code cannot escape its memory region, though bugs in SFI
compilers can (and do) incorrectly remove these checks
and introduce bugs that let code escape its sandbox. To
address this—following other SFI systems [31]—we have
built a static verifier for binary code executed by Veracruz,
an extension of VeriWasm [32], an open-source SFI verifier
for compiled Wasm code. To adapt VeriWasm to Veracruz,
we added support for AArch64, and ported VeriWasm from
the Lucet toolchain to Wasmtime, as used by Veracruz. We
plan to further extend VeriWasm to check other properties
besides software fault isolation, e.g., Spectre [33] resistance.

Finally, a provisioned program, πm, is either kept classi-
fied by its owner, or declassified to other principals in the
computation (maybe all). In the former case, other principals
must either implicitly trust that πm behaves in a particular
way, or establish some other mechanism bounding the be-
havior of the program, out-of-band of Veracruz. We aim for
a middle ground, allowing a program owner to declassify
runtime properties of the program, enforced by Veracruz,
while retaining secrecy of the binary (using e.g., [34]).

5.1 Author biographies
All authors have agreed not to provide biographies.

REFERENCES

[1] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-
based attacks on enclaved execution,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Asso-
ciation, Aug. 2017, pp. 1041–1056.

https://github.com/veracruz-project/veracruz
https://gitlab.com/arm-research/security/icecap/icecap


12

[2] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks
against Intel SGX,” in Proceedings of the 41st IEEE Symposium on
Security and Privacy (S&P’20), 2020.

[3] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 185–200.

[4] T. Sewell, S. Winwood, P. Gammie, T. C. Murray, J. Andronick, and
G. Klein, “sel4 enforces integrity,” in Interactive Theorem Proving -
Second International Conference, ITP 2011, Berg en Dal, The Nether-
lands, August 22-25, 2011. Proceedings, 2011, pp. 325–340.

[5] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein,
“Noninterference for operating system kernels,” in Certified Pro-
grams and Proofs - Second International Conference, CPP 2012, Kyoto,
Japan, December 13-15, 2012. Proceedings, 2012, pp. 126–142.

[6] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein, “sel4: From general
purpose to a proof of information flow enforcement,” in 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, 2013, pp. 415–429.

[7] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection: The
missing os abstraction,” in Proceedings of the Fourteenth EuroSys
Conference 2019, ser. EuroSys ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[8] I. Kuz, G. Klein, C. Lewis, and A. Walker, “capDL: A language
for describing capability-based systems,” in Proceedings of the 1st

ACM Asia-Pacific Workshop on Systems (APSys), 06 2010, pp. 31–36.
[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “KVM:

the Linux virtual machine monitor,” in In Proceedings of the 2007
Ottawa Linux Symposium (OLS’-07, 2007.

[10] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualiza-
tion for serverless applications,” in NSDI, 2020.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Sixth Symposium on Operating System
Design and Implementation (OSDI), San Francisco, CA, 2004, pp.
137–150.

[12] M. Nystrom and B. Kaliski, “PKCS #10: Certification request
syntax specification version 1.7,” Internet Requests for Comments,
RFC Editor, RFC 2986, November 2000.

[13] H. Tschofenig, S. Frost, M. Brossard, A. Shaw, and T. Fossati,
“Arm’s Platform Security Architecture (PSA) attestation token,”
Nov 2019, accessed 2020-04-15. [Online]. Available: https:
//tools.ietf.org/id/draft-tschofenig-rats-psa-token-05.html

[14] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Доверя́й, но проверя́й:
SFI safety for native-compiled Wasm,” in NDSS. Internet Society,
2021.

[15] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim,
M. Peinado, and B. B. Kang, “Hacking in darkness: Return-
oriented programming against secure enclaves,” in Proceedings of
the 26th USENIX Conference on Security Symposium, ser. SEC’17.
USA: USENIX Association, 2017, p. 523–539.

[16] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and
N. Kourtellis, “PPFL: privacy-preserving federated learning with
trusted execution environments,” in Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services,
2021, pp. 94–108.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[18] R. Duan, L. Li, C. Zhao, S. Jia, Y. Ding, Y. Zhang, H. Wang,
Y. Cheng, L. Wei, and T. Chen, “Rust SGX SDK,” https://github.c
om/apache/incubator-teaclave-sgx-sdk, Jun 2020, accessed 2020-
04-15.

[19] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learn-
ing on trusted processors,” in Proceedings of the 25th USENIX
Conference on Security Symposium, ser. SEC’16. USA: USENIX
Association, 2016, p. 619–636.

[20] A. Mandal, J. C. Mitchell, H. Montgomery, and A. Roy, “Data
oblivious genome variants search on Intel SGX,” in Data Privacy
Management, Cryptocurrencies and Blockchain Technology, J. Garcia-

Alfaro, J. Herrera-Joancomartı́, G. Livraga, and R. Rios, Eds.
Cham: Springer International Publishing, 2018, pp. 296–310.

[21] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor, “Us-
ing Intel Software Guard Extensions for efficient two-party secure
function evaluation,” in Financial Cryptography and Data Security,
J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and
K. Rohloff, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 302–318.

[22] I. T. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” CoRR, vol. abs/0901.0131,
2009.

[23] X. Zhao, K. Borders, and A. Prakash, “Svgrid: a secure virtual
environment for untrusted grid applications,” in Proceedings of the
3rd international workshop on Middleware for grid computing, MGC
2005, R. Nandkumar, B. Schulze, and P. Henderson, Eds., 2005, pp.
2:1–2:6.

[24] M. Bazm, M. Lacoste, M. Südholt, and J. Menaud, “Secure dis-
tributed computing on untrusted fog infrastructures using trusted
linux containers,” in 2018 IEEE International Conference on Cloud
Computing Technology and Science, CloudCom 2018. IEEE Computer
Society, 2018, pp. 239–242.

[25] P. Koeberl, V. Phegade, A. Rajan, T. Schneider, S. Schulz, and
M. Zhdanova, “Time to rethink: Trust brokerage using Trusted
Execution Environments,” in Trust and Trustworthy Computing -
8th International Conference, TRUST 2015, ser. Lecture Notes in
Computer Science, M. Conti, M. Schunter, and I. G. Askoxylakis,
Eds., vol. 9229. Springer, 2015, pp. 181–190.

[26] “Inclavare Containers,” https://github.com/inclavare-container
s/inclavare-containers, 2022, accessed 2022-11-06.

[27] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE:
Secure Linux containers with Intel SGX,” in 12th USENIX Sympo-
sium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, 2016, pp. 689–703.

[28] G. Chen, Y. Zhang, and T.-H. Lai, “OPERA: Open remote at-
testation for Intel’s secure enclaves,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 2317–2331.

[29] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “FaCT:
A DSL for timing-sensitive computation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 174–189.

[30] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-
Wasm: Type-driven secure cryptography for the Web ecosystem,”
Proc. ACM Program. Lang., vol. 3, no. POPL, jan 2019.

[31] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sand-
box for portable, untrusted x86 native code,” in 2009 30th IEEE
Symposium on Security and Privacy. IEEE, 2009, pp. 79–93.

[32] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Trust, but verify: SFI safety
for native-compiled Wasm,” in Network and Distributed System
Security Symposium (NDSS). Internet Society, 2021.

[33] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. John-
son, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham,
D. Tullsen, and D. Stefan, “Swivel: Hardening WebAssembly
against Spectre,” in USENIX Security Symposium. USENIX, Au-
gust 2021.

[34] D. P. Mulligan and N. Spinale, “The Supervisionary proof-
checking kernel, or: a work-in-progress towards proof-generating
code (extended abstract),” https://dominicpm.github.io/publicat
ions/mulligan-supervisionary-2022.pdf, 2022.

https://tools.ietf.org/id/draft-tschofenig-rats-psa-token-05.html
https://tools.ietf.org/id/draft-tschofenig-rats-psa-token-05.html
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/apache/incubator-teaclave-sgx-sdk
https://github.com/inclavare-containers/inclavare-containers
https://github.com/inclavare-containers/inclavare-containers
https://dominicpm.github.io/publications/mulligan-supervisionary-2022.pdf
https://dominicpm.github.io/publications/mulligan-supervisionary-2022.pdf

	Introduction
	IceCap
	Veracruz
	Attestation
	Programming model
	Ad hoc acceleration
	Trust and threat model

	Evaluation
	Case-study: deep learning
	Case-study: video object detection
	Further performance comparisons

	Closing remarks
	Author biographies

	References

