
Privacy-Preserving Object Detection with Veracruz
Mathias Brossard∗, Guilhem Bryant∗, Xinxin Fan†, Alexandre Ferreira∗, Edmund Grimley-Evans∗,

Christopher Haster∗, Derek Miller∗, Dominic P. Mulligan∗, Hugo J.M. Vincent∗, Shale Xiong∗, Lei Xu¶
∗Systems Research Group, Arm Ltd, Cambridge UK & Austin, TX

†IoTeX, Menlo Park, CA 94025
¶The Department of Computer Science, Kent State University, Kent, OH 44240

Email: ∗{firstname.lastname}@arm.com †xinxin@iotex.io ¶lxu12@kent.edu

Abstract—Ucam is a user-centric, blockchain-based and end-
to-end secure home IP camera system designed by IoTeX. In a
Ucam system, all the video clips captured by the camera are
encrypted using a user-controlled symmetric key before storing
them in the cloud. In this demo paper, we describe the system
architecture and implementation of a privacy-preserving object
detection proof-of-concept (PoC) for the Ucam system using
Veracruz, a confidential computing framework developed by
Arm Research. The resulting PoC demonstrates the viability
of bringing the object detection capability to the Ucam system
without leaking users sensitive information.

Index Terms—End-to-End Encryption, Object Detection, Con-
fidential Computing, Privacy-preserving Computing, AWS Nitro
System

I. INTRODUCTION

Ucam [1], [3] is a user-centric, blockchain-based and end-
to-end secure home IP camera system designed by IoTeX [2]
to address a number of vulnerabilities in the existing solutions.
One of salient features of Ucam is the realization of end-to-end
encryption that utilizes user-specified secret keys to encrypt
video clips and live streaming videos. While the end-to-end
encryption offers strong privacy protection and ensures that
only camera owners are able to access the videos captured
by their devices, it becomes a challenge for providing the
advanced object detection capability for Ucam customers.

To enable object detection on encrypted video clips, we
implement a privacy-preserving object detection proof-of-
concept (PoC) for the Ucam system in this demo paper. Our
PoC is built upon Veracruz, a privacy-preserving collaborative
computing framework developed by Arm Research [4], [5],
and leverages the AWS Nitro system as well as Kubernetes [6]
to run the computation securely and in a scalable way. The
PoC demonstrates the viability of adding the object detection
feature to the Ucam system without jeopardizing camera
owners’ privacy.

II. PRELIMINARIES

A. Veracruz: Privacy-Preserving Collaborative Computing

Veracruz [4] is a framework for defining and deploy-
ing collaborative, privacy-preserving computations amongst
a group of mutually mistrusting individuals. Veracruz uses
strong isolation technology (a mixture of trusted hardware and
high-assurance hypervisor-based isolation), along with remote
attestation protocols, to establish a safe, “neutral ground”
within which a collaborative computation takes place on an

untrusted device. More specifically, Veracruz computations
are WebAssembly binaries that use the WebAssembly System
Interface (WASI). WebAssembly acts both as a sandbox,
pinning down the behaviour of the program, and allows us to
abstract over the different strong isolation technologies. For the
design methodology and use cases of Veracruz, an interested
reader is referred to [5].

B. AWS Nitro System

The AWS Nitro system [7] is a new Amazon Elastic Com-
pute Cloud (EC2) feature that allows users to create isolated
compute environments (a.k.a, enclaves) to protect and process
sensitive data within EC2 instances. Attestation is an important
feature of Nitro enclaves which allows a remote host to verify
an enclave’s identity and that only authorized code is running
inside the enclave. The attestation process is conducted via
the Nitro Hypervisor, which uses a series of measurements
that are unique to an enclave to produce a signed attestation
document. An attestation document contains key information
(e.g., enclave’s public key, hashes of the enclave images and
applications, etc.) of an enclave and allows the remote host to
determine whether to grant the enclave access to the requested
operation. For more information about the AWS Nitro system,
an interested reader is referred to [8].

III. SYSTEM ARCHITECTURE AND WORKFLOW

A. System Architecture

The system architecture of privacy-preserving object de-
tection for Ucam is illustrated in Fig. 1. While the current
implementation is based on AWS solutions, the proposed
architecture can be easily adapted to other cloud platforms.
The proposed system consists of the following roles and
components:

• Ucam: A Ucam is a secure home IP camera which
encrypts captured video clips using a user-controlled
symmetric key.

• AWS S3: S3 is an object storage service in AWS for
storing encrypted video clips.

• User Application: A user application deals with generat-
ing user policy and creating credentials for the user proxy
accessing the AWS S3 and Veracruz instance.

• User Proxy: The user proxy is a service that retrieves
encrypted video clips from AWS S3 and sends them to
the Veracruz instance on behalf of a Ucam user.

2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops): Demos

978-1-6654-5381-3/23/$31.00 ©2023 IEEE 322

Fig. 1. The system architecture of privacy-preserving object detection for Ucam using Veracruz

• Administrator Application: An administrator application
is responsible for registering confidential computing func-
tions (e.g., an object detection algorithm) with CCFaaS.

• Confidential Computing as a Service (CCFaaS): The
CCFaaS provides RESTful APIs that allow confidential
computing functions to be instantiated within a Veracruz
environment.

• Veracruz as a Service (VaaS): The VaaS provides REST-
ful APIs that allow multiple instances of Veracruz to
be allocated, attested and loaded in a Kubernetes-based,
Nitro-enabled cloud.

• AWS Nitro System: The AWS Nitro enclaves create trusted
execution environments (TEEs) that allow users to per-
form computations on sensitive data.

• Proxy Attestation Service (PAS): The PAS provides a
unified interface that allows a single client to attest a
Veracruz runtime on different TEE platforms without
having to know the details of the various attestation flows.

To realize privacy-preserving object detection with Ver-
acruz, a key step is to create a public global policy configu-
ration file that parameterizes the computation in question and
contains other relevant metadata.

B. Veracruz Instantiation
A Veracruz instance is dedicated to compute the result

π(D1, . . . , Dn) in a delegated third-party machine. Internally,
Veracruz utilises a virtual in-memory filesystem (VFS) and
both programs, π, and data, Di, are uniformly treated as
files. During instantiation, Veracruz requires a global policy
(described in JSON), auditable by all users, to provide essen-
tial information: the topology of the computation, and attesta-
tion and infrastructure metadata. The former grants different

persmissions to different entities, both users and programs. In
particular, it is crutial to protect sensitive information amongst
mutually distructed users. In Veracruz, a user is identified by
a X.509 certificate, which is used in the TLS connection.
After authentication, a user can provision (write to VFS)
programs and data, and retrieve (read from VFS) the result
of the computation from the VFS in Veracruz. All access to
the VFS is bounded by the permission specifies in the policy.
Furthermore, if a user provisions a program, it must match the
expected hash explicitly included in the policy. Each program
is also granted with certain permissions to VFS; this implicitly
specifies the inputs and outputs, and necessary intermediate
buffers (files) for the execution.

The metadata of a Veracruz contains necessary information
for managing and communicating with the instance, and, more
importantly, attestation. The former contains experation date
and URL of this instance. The latter congains expected hashes
of Veracruz runtime and the underline TEE, e.g. Nitro. Since
Veracruz abstracts attestation process by PAS, its URL is also
included in the policy.

C. System Workflow

In this section, we will refer the step numbers in Fig. 1. We
now introduce the three phases in our system, policy creation,
steps 1 to 11, attestation, steps 12, 13 and 14, and privacy-
preserving object detection, step 15 to 21.

1) Global Policy Creation: In this phase, the user appli-
cation, administrator application, CCFaaS, and VaaS work
together to create a global policy for realizing the privacy-
preserving object detection using Veracruz. The global policy
creation process is as follows:

2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops): Demos

323

1 The administrator application creates a function policy
file and registers the object detection function that is
compiled to WebAssembly (i.e., object-detection.wasm)
with CCFaaS;

2 The user application generates a key pair and the corre-
sponding X.509 certificate for the user proxy;

3 The user application creates a user policy file which
specifies: i) object-detection.wasm is the function to be
executed in TEE; ii) The user proxy provides the input
(i.e., encrypted video clips); and iii) The user application
receive the output (i.e., the object detection result);

4 The user application executes a remote procedure call
(RPC) to the CCFaaS with the created user policy;

5 The CCFaaS validates the request and creates a valid
policy request that is the combination of the user and
function policies;

6 The CCFaaS executes a RPC to the VaaS with the
combined user and function policy and requests the VaaS
to provision a Veracruz instance running that policy;

7 The VaaS validates the request and starts a Veracruz
instance in the allocated AWS EC2 Nitro system with a
global policy that is the combination of the user, function
and infrastructure policies;

8 The VaaS returns the global policy to the CCFaaS;
9 The CCFaaS load the object detection code into the

provisioned Veracruz instance;
10 The CCFaaS returns the global policy to the user appli-

cation after the program code is loaded successfully;
11 The CCFaaS and VaaS waits for the next confidential

computation request.
2) Remote Attestation and Key Provisioning: In this phase,

the user application performs a remote attestation with the
aid of the PAS to validate integrity of the program code and
data inside the AWS Nitro enclave and provisions the video
decryption key in the enclave after verifying the attestation re-
port successfully. The remote attestation and key provisioning
process is as follows:
12 The user application receives the global policy from the

CCFaaS;
13 The user application directly connects to the Veracruz

instance using the connection information in the global
policy and verifies that the SHA-256 hash of the enclave
runtime matches the result in the attestation report;

14 The user application creates a file in the Veracruz instance
with the video decryption key.

3) Privacy-Preserving Object Detection: In this phase,
the user application instructs the user proxy to retrieve an
encrypted video clip from AWS S3 and sends it to the
Veracruz instance for object detection. The encrypted video
clip is decrypted inside the enclave before applying the object
detection algorithm. Once the computation is completed, the
result can be securely retrieved by user application via TLS.
The object detection process is as follows:
15 The user application creates a JSON object which con-

tains: i) The name of the AWS S3 bucket; ii) The file

name of the encrypted video clip: iii) The credentials
for accessing the file; iv) The endpoint of the Veracruz
instance; and v) The previously generated key and X.509
certificate for the user proxy;

16 The user application executes a RPC to the user proxy
with the created JSON object;

17 The user proxy starts an instance of itself that retrieves
the encrypted video clip from the AWS S3 bucket and
sends it to the Veracruz instance;

18 The Veracruz instance decrypts the video clips using
the previously provisioned decryption key, performs the
object detection algorithm and sends the results to the
output file;

19 The user proxy instance closes the connection to the
Veracruz instance at the end of file transmission and
terminates itself;

20 The user application retrieves the results and terminates
the Veracruz instance;

21 The AWS EC2 Nitro instance is returned to the pool of
free instances.

The full orchestrated end-to-end demo is deployed using
docker containers on a Kubernetes (k8s or k3s) infrastructure
on AWS. The source code and deployment documentation are
available on Github1.

REFERENCES

[1] Ucam. https://ucam.iotex.io/.
[2] IoTeX. https://iotex.io/.
[3] X. Fan, Z. Zhong, Q. Chai and D. Guo, Ucam: A User-Centric,

Blockchain-Based and End-to-End Secure Home IP Camera System,
The 16th EAI International Conference on Security and Privacy in
Communication Networks (SecureComm 2020), ser. LNICST 336, N.
Park et al. (Eds.), Berlin, Germany: Springer-Verlag, pp. 311-323, 2020

[4] Veracruz: Privacy-Preserving Collaborative Compute.
https://veracruz-project.com/.

[5] M. Brossard, G. Bryant, B. El Gaabouri, X. Fan, A. Ferreira, E. Grimley-
Evans, C. Haster, E. Johnson, D. Miller, F. Mo, D.P. Mulligan, N.
Spinale, E. Van Hensbergen, H.J.M. Vincent, and S. Xiong, Private
Delegated Computations Using Strong Isolation,
https://arxiv.org/abs/2205.03322, 2022.

[6] Kubernetes. https://kubernetes.io/.
[7] AWS Nitro System. https://aws.amazon.com/ec2/nitro/.
[8] AWS Nitro Enclaves User Guide.

https://docs.aws.amazon.com/enclaves/latest/user/enclaves-user.pdf.

1https://github.com/veracruz-project/veracruz-examples/tree/main/i-poc

2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops): Demos

324

