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Abstract
Sensitive computations are now routinely delegated to third-
parties. In response, Confidential Computing technologies
are being introduced to microprocessors, offering a protected
processing environment, which we generically call an isolate,
providing confidentiality and integrity guarantees to code and
data hosted within—even in the face of a privileged attacker.
Isolates, with an attestation protocol, permit remote third-
parties to establish a trusted “beachhead” containing known
code and data on an otherwise untrusted machine. Yet, the
rise of these technologies introduces many new problems,
including: how to ease provisioning of computations safely
into isolates; how to develop distributed systems spanning
multiple classes of isolate; and what to do about the billions of
“legacy” devices without support for Confidential Computing?

Tackling the problems above, we introduce Veracruz, a
framework that eases the design and implementation of com-
plex privacy-preserving, collaborative, delegated computa-
tions among a group of mutually mistrusting principals. Ver-
acruz supports multiple isolation technologies and provides a
common programming model and attestation protocol across
all of them, smoothing deployment of delegated computa-
tions over supported technologies. We demonstrate Ver-
acruz in operation, on private in-cloud object detection on
encrypted video streaming from a video camera. In addi-
tion to supporting hardware-backed isolates—like AWS Nitro
Enclaves and Arm® Confidential Computing Architecture
Realms—Veracruz also provides pragmatic “software iso-
lates” on Armv8-A devices without hardware Confidential
Computing capability, using the high-assurance seL4 micro-
kernel and our IceCap framework.

1 Introduction

Code and data are now routinely shared with a delegate who
is better placed, either through economies of scale, or compu-
tational capacity, to host a computation. While Cloud com-
puting is the obvious exemplar of this trend, other forms of

distributed computing—including volunteer Grid Comput-
ing, wherein machines lend spare computational capacity to
realize some large computation, and Ambient Computing,
wherein computations are mobile and hop from device-to-
device as computational contexts change—also see computa-
tions freely delegated to third parties.

At present, in the absence of the widespread deployment
of Advanced Cryptography [42], delegating computation to a
third party inexorably means entering into a trust relationship
with the delegate, and for some especially sensitive compu-
tations this may be simply unacceptable. Yet, even for less
sensitive delegated computations, there is still an interest in
limiting the scope of this trust relationship. In the Cloud
context, though established hosts may be reputable, technical
means may be desired to shield computations from prying
or interference which may originate from many sources, not
only from the hosting company themselves: malefactors may
exploit hypervisor bugs to spy on co-tenants, for example.
Cloud hosts also increasingly see an interest in deniable host-
ing, wherein technical measures ensure that a customer’s
computations simply cannot be interfered with, or spied upon,
by the hosts themselves—even in the face of legal compulsion.
For Ambient and volunteer Grid Computing, these concerns
also manifest: nodes must be assumed hostile and assumed to
be trying to undermine a computation, either through malice
or as a consequence of bugs or glitches. As a result, volunteer
Grid Computing deployments may schedule computations on
multiple nodes and check for consistency [4].

In response, novel Confidential Computing technologies
are being added to microprocessor architectures and cloud
infrastructure, providing protected computing environments—
variously called Secure Enclaves, Realms, Trusted Execution
Environments, and which we generically call isolates—that
provide strong confidentiality and integrity guarantees to code
and data hosted within, even in the face of a privileged at-
tacker. Isolates are also typically paired with an attestation
protocol, allowing a third-party to deduce, with high confi-
dence, that a remote isolate is authentic and configured in a
particular way. Taken together, one may establish a protected
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“beachhead” on an untrusted third-party’s machine—exactly
what is needed to protect delegated computations.

Isolates offer a range of benefits for system designers,
namely allowing programmers to design arbitrarily complex
privacy-preserving distributed systems using standard tools
and programming idioms that run at close to native speed.
Moreover, compared to cryptographic alternatives, Confiden-
tial Computing technology is available for use and deploy-
ment in real systems today. Yet, the emergence of Confiden-
tial Computing technology poses some interesting problems.

First, note that Confidential Computing technologies sim-
ply provide an empty, albeit secure, isolate. Associated ques-
tions like how computations are securely provisioned into an
isolate, how to make this process straightforward and fool-
proof, and how systems are designed and built around isolates
as a new kind of primitive, are left unanswered. Moreover, for
some types of distributed system—such as Grid and Ambient
computing systems, previously discussed—it is feasible that
different types of isolate will be used within a single larger
system. Here, bridging differences in attestation protocol and
programming model will be key, as will be easing deployment
and scheduling of computations hosted within isolates.

For this reason, we introduce our main research contri-
bution: Veracruz, a framework that abstracts over isolates
and their associated attestation processes. Veracruz supports
multiple different isolation technologies, including hardware-
backed isolates like AWS Nitro Enclaves and Arm Confi-
dential Computing Architecture Realms on a private branch.
Adding support for more is straightforward. Veracruz pro-
vides a uniform programming model across different sup-
ported isolates—using WebAssembly (Wasm, henceforth)
[96]—and a generalized form of attestation, providing a
“write once, isolate anywhere” style of development: pro-
grams can be protected using any supported isolation technol-
ogy without recompilation. Veracruz is discussed in §4.

Veracruz captures a particularly general form of interaction
between mutually mistrusting parties. As a result, Veracruz
can be specialized in a straightforward manner to obtain an
array of delegated, privacy-preserving computations of in-
terest. In support of this claim we provide a description of
how Veracruz can be used for secure ML model aggrega-
tion, and an industrial case-study built around AWS Nitro
Enclaves, demonstrating an end-to-end encrypted video de-
coding and object-detection flow, using a deep learning frame-
work processing video obtained from an IoT camera. These
case-studies, and further benchmarking, are discussed in §5.

In §2 we argue that Confidential Computing technology
is likely to be widely deployed within industry, despite well-
known flaws in particular implementations. Yet, billions of
existing devices have already been shipped without any ex-
plicit support for Confidential Computing, and these devices
will continue to be used for years, if not decades, to come.
Is there some pragmatic isolation mechanism that we could
use on “legacy” devices which, while falling short of the

confidentiality and integrity guarantees offered by hardware-
backed Confidential Computing mechanisms, can yet provide
believable isolation for workloads? Rising to this challenge,
we introduce our second research contribution: IceCap, a
pragmatic “software isolate” for Armv8-A devices without
explicit support for Confidential Computing. IceCap uses the
high-assurance seL4 microkernel to provide strong confiden-
tiality and integrity guarantees for VMs, with little overhead.

IceCap is supported by Veracruz, and taken together,
one may design and deploy delegated computations across
hardware- and software-isolates on next-generation and
legacy hardware, alike. We introduce IceCap in §3, as a
stepping stone to the introduction of Veracruz.

2 Hardware-backed Confidential Computing

In addition to the already widely-deployed Arm
TrustZone® [7] and Intel Software Guard Extensions
(SGX) [29], an emerging group of novel Confidential
Computing technologies are being added to microprocessor
architectures and cloud infrastructures, including AMD Se-
cure Encrypted Virtualization (SEV) [50], Arm Confidential
Computing Architecture (CCA) [6], AWS Nitro Enclaves [9],
and Intel Trust Domain Extensions (TDX) [46]. All introduce
a hardware-backed protected execution environment, which
we call an isolate, providing strong confidentiality (the
content of the isolate remains opaque to external observers)
and integrity (the content of the isolate remains protected
from interference by external observers) guarantees to code
and data hosted within. These guarantees apply even in
the face of a strong adversary, with any operating system
or, in most cases even a hypervisor, outside of the isolate
assumed hostile. Memory encryption may also be provided
as a standard feature to protect against a class of physical
attack. Isolates are often associated with an attestation
protocol—e.g., EPID for Intel SGX [14, 15] and AWS Nitro
Attestation for AWS Nitro Enclaves [9]. These permit a
third party to garner strong, cryptographic evidence of the
authenticity and configuration of a remote isolate.

Some isolate implementations have unfortunately fallen
short of their promised confidentiality and integrity guaran-
tees. A substantial body of academic work, demonstrating
that side-channel (see e.g. [13,16,22,30,44,64,87,88,98,101])
and fault injection attacks [24,67,84] can be used to exfiltrate
secrets from isolates, now exists, and a perception—at least in
the academic community and technical press—appears to be
forming that isolates are fundamentally broken and any conse-
quent research project that builds upon them need necessarily
justify that decision. We argue that this emerging perception
is an instance of the perfect being the enemy of the good.

First, we expect that many identified flaws will be gradually
ironed out over time, either in point-fixes, iterated designs, or
by the adoption of software models that avoid known vulnera-
bilities. For hardware, we have already seen some flaws fixed
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using microcode updates and other point-fixes by affected
manufacturers (e.g, [27]). For software, research into methods
designed to avoid known classes of side-channels is emerg-
ing, through implementation techniques such as constant-time
algorithms, and dedicated type-systems such as FaCT [19]
and CT-Wasm [95]. These may prove to be useful in imple-
menting systems with isolates, and we summarize our own
ongoing experimentation with these approaches in §6.

Second, we expect that industrial adoption of isolates will
be widespread, and arguably this is already in evidence with
the formation of consortia such as the LF’s Confidential Com-
puting Consortium [25], and an emerging ecosystem of indus-
trial users and startups. Researching systems that use isolates,
and ease their deployment, is therefore not only justifiable,
but very useful. Here, industrial users pragmatically evalu-
ate isolate-based systems in comparison with the status quo,
where delegated computations are—by and large—left com-
pletely unprotected, and we argue that it is this standard which
should be applied when evaluating systems built around iso-
lates, not comparison with side-channel free cryptography
which is still impractical in an industrial context. In this
light, forcing malefactors to resort to side-channel and fault
injection attacks—many of which are impractical, or can be
defended against using others means—to exfiltrate data from
an isolate is a welcome, albeit incremental, improvement in
the privacy-guarantees that real systems can offer users.

3 IceCap

IceCap is a hypervisor with a minimal trusted computing base
(TCB, henceforth) built around the formally verified seL4
microkernel. IceCap provides a pragmatic and flexible soft-
ware isolate for many existing Armv8-A devices. The IceCap
hypervisor relegates the untrusted operator to a domain of
limited privilege called the host. This domain consists of
a distinguished virtual machine—housing a rich operating
system such as Linux—and a minimal accompanying virtual
machine monitor. The host domain manages the device’s CPU
and memory resources, and drives device peripherals which
the TCB does not depend on. This includes opaque memory
and CPU resources for confidential virtual machines—or iso-
lates. However, the host does not have the right to access the
resources of isolates—while scheduling and memory man-
agement policy is controlled by the host, mechanism is the
responsibility of more trustworthy components.

IceCap’s TCB includes the seL4 microkernel and compart-
mentalized, privileged seL4-native services running in EL0.
These co-operate defensively with the host to expose isolate
lifecycle, scheduling, and memory management mechanisms.

At system initialization, the hypervisor extends from the
device’s root of trust via a device-specific measured boot pro-
cess and then passes control to the untrusted host domain. A
remote party coordinates with the host to spawn a new isolate
by first sending a declarative specification of the isolate’s ini-

tial state to IceCap’s trusted spawning service, via the host,
which then carves-out the requested memory and CPU re-
sources from resources which are inaccessible to the host. A
process on the host, called the shadow virtual machine mon-
itor, provides untrusted paravirtualized device backends to
isolates, and also acts as a token representing the isolate in
the host’s scheduler, to enable the host operating system to
manage isolate scheduling policy with minimal modification.

To support attestation of isolates, IceCap would use a
platform-specific measured boot to prove its own identity
and then attest that of an isolate to a remote challenger. This
is not yet implemented, with IceCap attestation being stubbed
to support Veracruz, but straightforward to do so.

seL4 is accompanied by security and functional correctness
proofs, checked in Isabelle/HOL [68, 69, 82], providing as-
surance that IceCap correctly protects isolates from software
attacks. By using seL4, IceCap will also benefit from ongo-
ing research into the elimination of certain classes of timing
channels [38]. The trusted seL4 userspace components of
IceCap are not yet verified, though they are compartmental-
ized and initialized using CapDL [55], which has a formal
semantics known to be amenable to verification [18] from
previous work. Using the high-level seL4 API, these com-
ponents are also implemented at a high level of abstraction
in Rust, making auditing easier and eliminating the need to
subvert the Rust compiler’s memory safety checks—even for
components which interact with hardware address translation
structures. The IceCap TCB is small and limited in scope—
about 40,000 lines of code. Virtual machine monitors are
moved to the trust domains of the virtual machines they su-
pervise, thereby eliminating emulation code from the TCB.
Towards that end, cross-domain fault handling is replaced
with higher-level message passing via seL4 IPC.

Isolates are also protected with the System MMU (SMMU)
from attacks originating from peripherals under the host’s
control. IceCap is designed to seamlessly take advantage of
additional hardware security features based on, or aligned
with, address translation-based access controls—Arm Trust-
Zone [7], for example. TrustZone firmware typically uses
the NS state bit to implement a coarse context switch, log-
ically partitioning execution on the application processor
into two worlds. IceCap could use this to run isolates out
of secure-world memory resources, protected by platform-
specific mechanisms which may mitigate certain classes of
physical attack.

Under IceCap, isolate and host incur a minimal perfor-
mance overhead compared to host and guests under KVM [51].
We use Firecracker [2]—an open-source VMM for KVM
from AWS—as a point of comparison, due to its minimalism
for the sake of performance, and preference for paravirtual-
ization over emulation. Compute-bound workloads in IceCap
isolates incur a ∼2.2% overhead compared to native Linux
processes and a ∼1.8% overhead compared to Firecracker
guests due to context switches through the TCB on timer
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Events per second (via sysbench)

Host Guest

Firecracker 586.18 582.65 (-0.60%)
IceCap 583.68 (-0.43%) 572.28 (-2.18%)

Bandwidth (Gbits/sec)

Guest → Host Host → Guest

Firecracker 3.42 3.14
IceCap 3.08 (-9.9%) 3.18 (+1.3%)

Table 1: Overheads for IceCap compute-bound workloads
(top) and virtual network performance (bottom)

ticks (see Table 1). The virtual network bandwidth between
the host and an isolate represents how data flows through
IceCap in bulk. However, at the time of writing, untrusted
network device emulation differs from Firecracker’s trusted
network device emulation in ways that hinder a satisfying
comparison, and with this in mind, we note guest-to-host
incurs a ∼9.9% bandwidth overhead, whereas host-to-guest
outperforms Firecracker by a small margin. As IceCap’s im-
plementation matures, we expect virtual network bandwidth
overhead to settle between these two points.

The great performance of seL4 IPC [81] helps reduce Ice-
Cap’s performance overhead, and this is further helped by min-
imizing VM exits using aggressive paravirtualization: VMMs
for both host and guest do not even map any of their VMs’
memory into their own address spaces, and their only runtime
responsibility is emulating the interrupt controller, with their
VMs employing interrupt mitigation to even avoid that.

Next, we introduce a framework for designing and deploy-
ing privacy-preserving delegated computations across various
different isolation technologies—IceCap included.

4 Veracruz

Throughout this section we make reference to the system
components presented in the schematic in Fig. 1.

Veracruz is a framework which may be specialized to obtain
a particular privacy-preserving, collaborative computation of
interest. A Veracruz computation involves an arbitrary num-
ber of data owners, trying to collaborate with a single pro-
gram owner. The framework places no limits on the number
of data owners, but a particular computation obtained by spe-
cializing Veracruz will always spell out a precise number of
participants. We use π to denote the program of the program
owner, and use Di for 1 ≤ i ≤ N to denote the data sets of the
various data owners in an arbitrary Veracruz computation.

Collectively, the goal of the various principals, P⃝,
is straightforward: they wish to compute the value
π(D1, . . . ,DN), that is, the value of the program π applied
to the N inputs of the various data owners. To do this, they
may choose to make use of a third party machine to power the

computation, D⃝. We refer to the owner of this machine as the
delegate, and this machine is assumed capable of launching
an isolate of a type that Veracruz supports, loaded with the
Veracruz trusted runtime, V⃝. This runtime acts as a “neutral
ground” within which a computation takes place, and provides
strong sandboxing guarantees to the delegate, who is loading
untrusted code in the form of π, onto their machine. The
runtime is open-source, and auditable by principals, assuming
bit-for-bit reproducible builds.

Each principal in a Veracruz computation has a mixture
of roles, consisting of some combination of data provider,
program provider, delegate, and result receiver. While the
first three have been implicitly introduced, the latter role refers
to principals who will receive the result of the computation.
The identification details of each principal, in the form of
cryptographic certificates (or an IP address for the delegate),
and their mixture of roles, is captured in a public global policy
configuration file, L⃝, which parameterizes each computation,
and which also contains other important bits of metadata.
Only one principal may be delegate or program provider.

The global policy captures the topology of a computation,
specifying where information may flow from, and to whom,
in a computation, while varying the program π varies pre-
cisely what is being computed. By varying the two, Veracruz
can capture a general pattern of interaction shared by many
delegated computations, and one could, for example, effect a
varied palette of computations of interest, including:
Moving heavy computations safely off a computationally-
weak device to an untrusted edge device or server. The
computationally-weak device is both data provider and result
receiver, the untrusted edge device or server is delegate, and
the computationally-weak device or its owner is the program
provider, providing the computation to be performed.
Privacy-preserving machine learning between a pair of mutu-
ally distrusting parties with private datasets, but where learnt
models are made available to both participants. Both princi-
pals are data providers, contributing their datasets provided in
some common format, and also act as result receivers for the
learnt model. Arbitrarily one acts as program provider, pro-
viding the implementation of the machine learning algorithm
of interest. A third-party, e.g., a Cloud host, acts as delegate.
A DRM mechanism wherein novel IP (e.g., computer vision
algorithms) are licensed out on a “per use” basis, and where
the IP is never exposed to customers. The IP owner is program
provider, and the licensee is both data provider and result
receiver, providing the inputs to, and receiving the output
from, the private IP. The IP owner themselves may act as
delegate, or this can be contracted out to a third-party. With
this, the IP owner never observes the input or output of the
computation, and the licensee never observes the IP.
The implementation of privacy-preserving auctions. An auc-
tion service acts as program provider, implementing a sealed-
bid auction, and also acts as delegate. Bidders are data
providers, submitting sealed bids. All principals are also
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Figure 1: An overview of an abstract Veracruz computation, showing principals and their roles, major system components, and a
suggestive depiction of data-flow. Isolates, such as those hosting the Veracruz runtime, are marked with boxes with padlocks

result receivers, receiving notice of the auction winner and
the price to be paid, which is public. Neither bidder nor auc-
tion service ever learn the details of any bids, other than their
own and the winning bid.

In addition, it is easy to see how more complex distributed
systems can be built around Veracruz. For example, a vol-
unteer Grid computing framework where confidentiality is
not paramount, but computational integrity is; an Ambient
computing runtime for mobile computations across a range of
devices; a privacy-preserving MapReduce [32] or Function-
as-a-Service (FaaS, henceforth) style framework. Here, com-
putational nodes act as an independent delegate for some
aspect of the wider computation, and different isolation tech-
nologies may also be used in a single computation, either
due to availability for Grid or Ambient computing, or due
to scheduling of sensitive sub-computations onto stronger
isolation mechanisms for MapReduce.

In the most general case, each principal in a Veracruz com-
putation is mutually mistrusting, and does not wish to de-
classify—or intentionally reveal—their data: data providers
do not wish to divulge their input datasets and the program
provider does not wish to divulge their program. Neverthe-
less, as the examples enumerated above indicate, for some
computations declassification can be useful, for example as
inducement to other principals to enroll in the computation,
a “nothing up my sleeve” demonstration. Referring back to
the privacy-preserving machine learning use-case, above, the
program provider may intentionally declassify their program
for auditing—before other principals agree to participate—
as a demonstration that the program implements the correct
algorithm, and will not (un)intentionally leak secrets. Simi-
larly, for a Grid computing project, revealing details of the
computation, as an enticement to users to donate their spare
computational capacity, may be beneficial.

Declassification can also occur as a side effect of the com-
putation itself, for example when the result of a computation—
which can reveal significant amounts of information about its
inputs, depending on π—is shared with an untrusted principal.

Principals must evaluate the global policy carefully, before
enrolling, to understand where results will flow to, and what
they may say about any secrets. Though Veracruz can be used
to design privacy-preserving distributed computations, not
every computation is necessarily privacy-preserving.

Once the delegate has spawned an isolate with the Veracruz
runtime loaded, the program and data owners establish a
TLS connection, using a modified TLS handshake, with the
isolate T⃝, as will be described later in §4.1. This handshake
assures the principals that the isolate is, in fact, executing the
Veracruz runtime specified in the global policy, and that the
isolate is the other end of their TLS connection. Once this
TLS channel is established, the program and data providers
use it to provision their respective secrets directly into the
isolate, 1⃝ and 2⃝. This makes use of an untrusted bridge,
U⃝, on the delegate’s machine but outside of the isolate, to
forward encrypted TLS data received into the isolate itself.
To the delegate, communication via this bridge is immutable
and opaque—except for sizing and timing information that
TLS leaks—unless they can subvert TLS. Note that TLS
configuration options, including permitted ciphersuites, and
the SHA-256 hash of the program π, are also specified in the
global policy. This latter aspect ensures that when a program,
π, is declassified, it can be audited by other principals, and
verified to be the same program provisioned into the isolate.

Provisioned secrets are stored as files in a virtual, in-
memory filesystem maintained by the Veracruz runtime, S⃝.
The contents of this filesystem never leave the isolate, and
are destroyed when the isolate is torn down. The paths of
data inputs, Di, are specified in the global policy file, as the
program π needs to know where its inputs are stored for pro-
cessing when the computation starts executing. Similarly, the
program π is also stored as a file, and will be read from the
filesystem itself when loaded for execution by the runtime.

Once everything is in place, a result receiver may request
the result of the computation, triggering the Veracruz runtime
to load the provisioned program, π, into the execution engine,
S⃝, and either compute the result π(D1, . . . ,DN), terminate
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with an error code, or diverge. Assuming a result is computed,
it is stored by the program as a file in the filesystem at a path
specified by the global policy. The runtime reads this path, or
fails with an error if the program did not write a result there,
and makes the result retrievable securely, via TLS, to all result
receivers, 4⃝. The computation is now complete.

4.1 Attestation
Given Veracruz supports multiple isolation technologies, this
poses a series of attestation-related problems:

Complex client code: Software used by principals delegat-
ing a computation to Veracruz must support multiple attesta-
tion protocols, complicating it. As Veracruz adds support for
more isolation mechanisms—potentially with new attestation
protocols—this client code must be updated to interact with
the new class of isolate.

Leaky abstraction: Veracruz abstracts over isolation tech-
nology, allowing principals to easily delegate computations
without worrying about the programming or attestation model
associated with any one class of isolate. Forcing clients to
switch attestation protocols, depending on the isolation tech-
nology, breaks this uniformity.

Potential side-channel: For some attestation protocols,
each principal in a Veracruz computation must refer attes-
tation evidence to an external attestation service.

Attestation policy: principals may wish to disallow com-
putations on delegates with particular isolation technolo-
gies. These policies may stem from security disclosures—
vulnerabilities in particular firmware versions, for example—
changes in business relationships, or geopolitical trends.
Given our support for heterogeneous isolation technologies,
being able to declaratively specify who or what can be trusted
becomes desirable. Existing attestation services do not take
policy into account, pushing the burden onto client code—
problematic if policy changes, as client code must be updated.

In response, we introduce a proxy attestation service for
Veracruz, which must be explicitly trusted by all principals
to a computation, with associated server and management
software open source, and auditable by anyone. This service
is not protected by an isolate, though in principle could be, and
doing so would allow principals to check the authenticity of
the proxy attestation service, before trusting it, for example.
Implementing this would be straightforward; for now we
assume that the attestation service is trusted, implicitly.

The proxy attestation service first uses an onboarding
process to enroll an isolate hosting Veracruz, after which the
isolate can act as a TLS server for principals participating in
a computation. We describe these steps, referring to Fig. 2.

Onboarding an isolate The proxy attestation service main-
tains a root CA key (a public/private key pair) and a Root
CA certificate containing the root CA public key, signed by
the root CA private key. This root CA certificate is included

in the global policy file of any computation using that proxy
attestation service. An onboarding protocol is then followed:

1. Upon initialization inside the isolate, the Veracruz run-
time V⃝ generates an asymmetric key pair, along with a
Certificate Signing Request (or CSR, henceforth) [71]
for that key pair.

2. The Veracruz runtime performs the platform’s native at-
testation flow O1⃝ with the proxy attestation server acting
as challenger X⃝. These native attestation flows provide
fields for user-defined data, which we fill with a crypto-
graphic hash (SHA-256) of the CSR, which cryptograph-
ically binds the CSR to the attestation data, ensuring that
they both come from the same isolate. The Veracruz
runtime sends the CSR to the proxy attestation server
along with the attestation evidence.

3. The proxy attestation server authenticates the attesta-
tion evidence received via the native attestation flow.
Depending on the particular protocol, this could be as
simple as verifying signatures via a known-trusted cer-
tificate, or by authenticating the received evidence using
an external attestation service.

4. The proxy attestation service computes the hash of the
received CSR and compares it against the contents of
the user-defined field of the attestation evidence. If it
matches, it confirms that the CSR is from the same iso-
late as the evidence.

5. The proxy attestation server converts the CSR to an
X.509 Certificate [28] containing a custom extension
capturing details about the isolate derived from the attes-
tation process, including a hash of the Veracruz runtime
executing inside the isolate (and optionally other infor-
mation about the platform on which the isolate is execut-
ing). The certificate is signed by the private component
of the proxy attestation server’s Root CA key.

6. The proxy attestation server returns the generated certifi-
cate to the Veracruz runtime inside the isolate.

In the typical CA infrastructure, a delegated certificate
can be revoked by adding it to a Certificate Revocation
List, checked by clients before completing a TLS handshake.
While this scheme is possible with our system, we elected
to use a different approach, setting the expiry in the isolate’s
certificate to a relatively short time in the future, so that the
proxy attestation service can limit the amount of time a com-
promised isolate can be used in computations. The lifetime
of isolate certificates can be decided upon via a policy of the
proxy attestation service, based upon their appetite for risk.

Augmented TLS handshake After an isolate is onboarded,
O1⃝, a principal, R⃝ can attempt to connect to it, using an aug-
mented TLS handshake. In response to the “Client Hello”
message sent by the principal, the isolate responds with a
“Server Hello” message containing the certificate that the
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P⃝ Principals

V⃝ Isolate
key pair: (kpub,kpri)

X⃝ Proxy Attestation Service
root key pair: (rpub,rpri)

Native
Attestation

Service

O2⃝ Native attestation

O1⃝ Native attestation request on a fresh challenge
and certificate signing request on key pair k

O3⃝ X.509 Certificate for the isolate
O4⃝ X.509 Certificate for the isolate

R⃝TLS Handshake

Figure 2: A schematic diagram of the Veracruz attestation service onboarding and challenge protocols

isolate received from the proxy attestation server, described
above. The principal then verifies that certificate against the
proxy attestation server root CA certificate contained within
the global policy. If it matches, it recognizes that the cer-
tificate was indeed generated by the proxy attestation server.
Recall that this certificate contains a custom extension. As-
suming successful verification, the principal then checks the
data contained in this extension against the expected values
in the global policy. As currently implemented, the extension
contains the hash of the Veracruz runtime, which is also listed
in the global policy, and the two are checked by the principal.
If they match, the principal continues the TLS handshake,
confident in the fact that it is talking to a Veracruz runtime
executing inside of a supported isolation technology.

Note that the proxy attestation service solves the problems
with attestation described above. First, client code is provided
with a uniform attestation interface—here, we use Arm’s PSA
attestation protocol [86]—independent of the underlying iso-
lation technology in use. Second, none of the principals in
the computation need to communicate with any native attes-
tation service. Thus, the native attestation service knows
that software was started in a supported isolate, but it has
no knowledge of the identities or even the number of prin-
cipals. Finally, the global policy represents the only source
of policy enforcement. The authors of the global policy can
declaratively describe who and what they are willing to trust,
with a principal’s client software taking this information into
account when authenticating or rejecting an attestation token.

Lastly, we note. that our attestation process is specifically
designed to accommodate client code running on embedded
microcontrollers—e.g., Arm Cortex®-M3 devices—with lim-
ited computational capacity, constrained memory and stor-
age (often measured in tens of kilobytes), and which tend
to be battery-powered with limited network capacity. Com-
munication with an attestation service is therefore cost- and
power-prohibitive, and using a certificate-based scheme al-
lows constrained devices to authenticate an isolate running
Veracruz efficiently. To validate this, we developed Veracruz
client code for microcontrollers, using the Zephyr embedded
OS [100]. Our client code is 9 kB on top of the mbedtls
stack [60], generally required for secure communication any-
way. Using this, small devices can offload large computations
safely to an attested Veracruz instance.

4.2 Programming model

Wasm [41] is designed as a sandboxing mechanism for use in
security-critical contexts—namely web browsers—designed
to be embeddable within a wider host, has a precise seman-
tics [93], is widely supported as a target by a number of high-
level programming languages such as Rust and C, and has
high-quality interpreters [90] and JIT execution engines avail-
able [91]. We have therefore adopted Wasm as our executable
format, supporting both interpretation and JIT execution, with
the strategy specified in the global policy.

Veracruz uses Wasm to protect the delegate’s machine from
the executing program, to provide a uniform programming
model, to constrain the behavior of the program, and to act as a
portable executable format for programs, abstracting away the
underlying instruction set architecture. Via Wasm, the trusted
Veracruz runtime implements a “two-way isolate” wherein
the runtime is protected from prying and interference from
the delegate, and the delegate is protected from malicious
program behaviors originating from untrusted code.

To complete a computation, a Wasm program needs some
way of reading inputs provided to it by the data provider, and
some way of writing outputs to the result receivers. However,
we would like to constrain the behavior of the program as
far as possible: a program dumping one of its secret inputs
to stdout on the host’s machine would break the privacy
guarantees that Veracruz aims to provide, for example. Partly
for this reason, we have adopted the WebAssembly System In-
terface [97] (or Wasi, henceforth) as the programming model
for Veracruz. Intuitively, this can be thought of as “Posix for
Wasm”, providing a system interface for querying Veracruz’s
in-memory filesystem, generating random bytes, and execut-
ing other similar system tasks. (In this light, the Veracruz
runtime can be seen as a simple operating system for Wasm.)
By adopting Wasi, one may also use existing libraries and
standard programming idioms when targeting Veracruz.

Wasi uses capabilities, in a similar vein to Capsicum [92],
and a program may only use functionality which it has been
explicitly authorized to use. The program, π’s, capabilities are
specified in the global policy, and typically extend to reading
inputs, writing outputs, and generating random bytes, con-
straining the program to act as a pure, randomized, function.
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4.3 Ad hoc acceleration

Many potential Veracruz applications make use of com-
mon, computationally intensive, or security-sensitive routines:
cryptography, (de)serialization, and similar. While these rou-
tines could be compiled into Wasm, this may incur a perfor-
mance penalty compared to optimized native code, and for
operations such as cryptography, compilation to Wasm may
not preserve security properties such as timing side-channel
safety. Rather, it is beneficial to provide a single, efficient, and
correct implementation for common use, rather than routines
being compiled into Wasm code haphazardly.

In response, we introduced “native modules” providing ac-
celeration for specific tasks which are linked into the Veracruz
runtime and invoked from Wasm programs. In benchmark-
ing one such module—the acceleration of (de)serialization of
Json documents from the pinecone binary format—we ob-
serve a 35% speed-up when (de)serializing a vector of 10,000
random elements (238s native vs. 375s Wasm). Additional
optimization will likely further boost performance.

Given the ad hoc nature of these accelerators, their lack of
uniformity, and the fact that more will be added over time,
invoking them from Wasm is problematic. Extending the
Veracruz system interface to incorporate accelerator-specific
functionality would take us beyond Wasi, and require the use
of support libraries for programming with Veracruz. Instead,
we opt for an interface built around special files in the Ver-
acruz filesystem, with modules invoked by Wasm programs
writing-to and reading-from these files, reusing existing pro-
gramming idioms and filesystem support in Wasi.

4.4 Threat model

The Veracruz TCB includes the underlying isolate, the Ver-
acruz runtime, and the implementation of the Veracruz proxy
attestation service. The host of the Veracruz attestation ser-
vice must also be trusted by all parties, as must the native
attestation services or keys in use. The correctness of the
various protocols in use—TLS, platform-specific native attes-
tation, and PSA attestation—must also be trusted.

The Wasm execution engine must also be trusted to cor-
rectly execute a binary, so that a computation is faithfully exe-
cuted according to the published bytecode semantics [80, 93],
and that the program is unable to escape its sandbox, damage
or spy on a delegate, or have any other side-effect than al-
lowed by the Veracruz sandboxing model. Recent techniques
have been developed that use post-compilation verification
to establish this trust [48]—we briefly discuss our ongoing
experiments in this area in §6. Compiler verification could be
used to engender trust in the Wasm execution engine, though
we are not aware of any verified, high-performance Wasm in-
terpreters or JITs suitable for use with Veracruz at the time of
writing (see [94] for progress toward this, however). Memory
issues have been implicated in attacks against isolates in the

past [58]—we write Veracruz in Rust in an attempt to avoid
this, with the compiler therefore also trusted.

Veracruz does not defend against denial-of-service attacks:
the delegate is in charge of scheduling execution, and liveness
guarantees are therefore impossible to uphold. A malicious
principal can therefore deny others access to a computation’s
result, or refuse to provision a data input or program, thereby
blocking the computation from even starting.

Different isolation technologies defend against different
classes of attacker, and as Veracruz supports multiple tech-
nologies we must highlight these differences explicitly.

AWS Nitro Enclaves protect computations from the AWS
customer running the EC2 instance associated with the isolate.
While AWS assures users that isolates are protected from
employees and other insiders, these assurances are difficult to
validate (and, as silicon manufacturer, AWS and its employees
must always be trusted). Our TCB therefore also contains
the Nitro hardware, Linux host used inside the isolate, the
attestation infrastructure for Nitro Enclaves, and any AWS
insiders with access to that infrastructure.

For Arm CCA Realms only the Realm Management Moni-
tor (RMM, henceforth), a separation kernel isolating Realms
from each other, has access to the memory of a Realm other
than the software executing in the Realm itself. Realms are
protected from the non-secure hypervisor, and any other soft-
ware running on the system other than the RMM, and will be
protected against a class of physical attacks using memory
encryption. Our TCB therefore contains the RMM, the sys-
tem hardware, Linux host inside the Realm, along with the
attestation infrastructure for Arm CCA.

For IceCap our TCB includes the seL4 kernel which we
rely on to securely isolate processes from one another, bol-
stered by a body of machine-checked proofs of the kernel’s
security and functional correctness (though at present these
do not extend to the EL2 configuration for AArch64). For
a typical hypervisor deployment of seL4, the SMMU is the
only defence against physical attacks.

The TCB of Veracruz includes both local and remote stacks
of hardware and software, while purely cryptographic tech-
niques merely rely on a trustworthy implementation of a prim-
itive and the correctness of the primitive itself. As demon-
strated in §5, Veracruz provides a degree of efficiency and
practicality currently out of reach for purely cryptographic
techniques, at the cost of this larger TCB.

Principals face a challenging class of threats stemming
from collusion between the other principals, including the
delegate. Some algorithms may be particularly vulnerable
to an unwanted declassification of secret inputs to any re-
sult receiver, and some attacks may be enhanced by collu-
sion between principals—e.g., a side-channel inserted into
the program for the benefit of the delegate. As discussed in
§2, several powerful side-channel attacks have been demon-
strated in the past against software executing within isolates,
and other side-channels also exist including wall-clock ex-
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Figure 3: Execution time of the DL examples, classifier train-
ing (L), inference (M), and ONNX model aggregation (R)

ecution time of the program, π, on the input data sets, and
data sizes and arrival times leaked by TLS connections. In
cases where programs are secret, principals must trust the
program provider not to collude with the result receiver, as a
secret program could trivially intentionally leak data into the
result or contain convert channels. If the existence of this trust
relationship is undesirable, then principals should insist on
program declassification before enrolling in a computation.

5 Evaluation

This section uses the following test platforms: Intel Core
i7-8700, 16 GiB RAM, 1 TB SSD (Core i7, henceforth);
c5.xlarge AWS VM, 8 GiB RAM, EBS (EC2, henceforth);
Raspberry Pi 4, 4 GiB RAM, 32 GB µSD (RPi4, henceforth).
We use GCC 9.30 for x86-64, GCC 7.5.0 for AArch64, and
Wasi SDK-14.0 with LLVM 13.0 for Wasm.

5.1 Case-study: deep learning
Training datasets, algorithms, and learnt models may be sensi-
tive IP and the learning and inference processes are vulnerable
to malicious changes in model parameters that can cause a
negative influence on a model’s behaviors that is hard to
detect [10, 62]. We present two Veracruz case-studies in pro-
tecting deep learning (DL henceforth) applications: privacy-
preserving training and inference, and privacy-preserving
model aggregation service, a step toward federated DL. We
use Darknet [63, 78] in both cases, and the Open Neural
Network eXchange [11, 26] (ONNX, henceforth) as the aggre-
gation format. We focus on the execution time of training,
inference, and model aggregation on the Core i7 test platform.

In the training and inference case-study, the program re-
ceives input datasets from the respective data providers and
a pre-learnt model from a model provider. Thereafter, the
provisioned program starts training or inference, protected
inside Veracruz. The results—that is, the trained model or
prediction—are made available to a result receiver. In the
model aggregation case-study, clients conduct local training
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Figure 4: Video object detection execution time on EC2 (L)
and RPi4 (R)

with their favorite DL frameworks, convert the models to
ONNX format, and provision these derived models into Ver-
acruz. The program then aggregates the models, making the
result available to all clients. By converting to ONNX locally,
we support a broad range of local training frameworks—i.e.,
PyTorch [74], Tensorflow [1], Darknet, or similar.

We trained a LeNet [57] on MNIST [57], a dataset of hand-
written digits consisting of 60,000 training and 10,000 val-
idation images. Each image is 28×28 pixels and less than
1 KiB; we used a batch size of 100 in training, obtaining a
trained model of 186 KiB. We take the average of 20 tri-
als for training on 100 batches (hence, 10,000 images) and
then ran inference on one image. For aggregation, we use
three copies of this Darknet model (186 KiB), obtaining three
ONNX models (26 KiB), performing 200 trials for aggrega-
tion, as aggregation time is significantly less. Results are
presented in Fig. 3.

For all DL tasks we observe the same execution time be-
tween Wasmtime and Veracruz, as expected, with both around
2.1–4.1× slower than native CPU-only execution, likely due
to more aggressive code optimization available in native com-
pilers. However, the similarity between Wasmtime and Ver-
acruz diverges for file operations such as loading and saving
of model data. Loading data from disk is 1.2–3.1× slower
when using Wasmtime compared to executing natively. How-
ever, I/O in Veracruz is usually faster than Wasmtime, and
sometimes faster than native execution, e.g., when saving im-
ages in inference. This is likely due to Veracruz’s in-memory
filesystem exhibiting a faster read and write speed transferring
data, compared to the SSD of the test machine.

5.2 Case-study: video object detection

We have used Veracruz to prototype a Confidential FaaS, run-
ning on AWS Nitro Enclaves and using Kubernetes [53]. In
this model, a cloud infrastructure or other delegate initializes
an isolate containing only the Veracruz runtime and provides
an appropriate global policy file. Confidential functions are
registered in a Confidential Computing as a Service (CCFaaS,
henceforth) component, which acts as a registry for clients
wishing to use the service and which collaborates, on behalf of
clients, with a Veracruz as a Service (VaaS, henceforth) com-
ponent which manages the lifetime of any spawned Veracruz
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Figure 5: Video object detection case-study

instances. Together, the CCFaaS and VaaS components draft
policies and initialize Veracruz instances, while attestation is
handled by clients, using the proxy attestation service.

Building atop this confidential FaaS infrastructure, we ap-
plied Veracruz in a full end-to-end encrypted video object
detection flow (see Fig. 5). Our intent is to demonstrate that
Veracruz can be applied to industrially-relevant use-cases:
here, a video camera manufacturer wishes to offer an object
detection service to their customers while providing believ-
able guarantees that they cannot access customer video.

The encrypted video clips originating from an IoTeX Ucam
video camera [47] are stored in an AWS S3 bucket. The encryp-
tion key is owned by the camera operator and perhaps gener-
ated by client software on their mobile phone or tablet. Inde-
pendently, a video processing and object detection function,
compiled to Wasm, is registered with the CCFaaS component
which takes on the role of program provider in the Veracruz
computation. This function makes use of the Cisco openh264
library as well as the Darknet neural network framework and
a prebuilt YOLOv3 model, as previously discussed in §5.1,
for object detection (our support for Wasi eased this porting).

Upon the request of the camera owner, the CCFaaS and
VaaS infrastructure spawn a new AWS Nitro Enclave loaded
with the Veracruz runtime, and configured using an appropri-
ate global policy that lists the camera owner as having the
role of data provider and result receiver. The confidential
FaaS infrastructure forwards the global policy to the camera
owner, where it is automatically analyzed by their client soft-
ware, with the camera owner thereafter attesting the AWS
Nitro Enclave instance. If the global policy is acceptable, and
attestation succeeds, the camera owner securely connects to
the spawned isolate, containing the Veracruz runtime, and se-
curely provisions their decryption key using TLS in their role
as data provider. The encrypted video clip is also then provi-
sioned into the isolate, by a dedicated AWS S3 application,
which is also listed in the global policy as a data provider, and
the computation can then go ahead. Once complete, meta-
data containing the bounding boxes of any object detected
in the frames of the video clips can be securely retrieved by
the camera owner via TLS, in their result receiver role, for
interpretation by their client software.

Note that in this FaaS infrastructure desirable cloud ap-
plication characteristics are preserved: the computation is
on-demand and scaleable, and our infrastructure allows mul-
tiple instances of Veracruz, running different functions, to

Description Time (ms)
Proxy Attestation Service start 7
Onboard new Veracruz isolate 3122
Request attestation message 54
Initialization of Veracruz isolate 1
Check hashes (including TLS handshake) 184
Provision object detection program 798
Provision data (model, video) 282323

Table 2: Breakdown of Veracruz deployment overheads for
the video object detection use-case on AWS Nitro Enclaves

be executed concurrently. Only the AWS S3 application, the
camera owner’s client application and the video decoding
and object detection function are specific to this use-case.
All other modules are generic, allowing other applications
to be implemented. Moreover, note that no user credentials
or passwords are shared directly with the FaaS infrastructure
in realizing this flow, beyond the name of the video clip to
retrieve from the AWS S3 bucket and a one-time access cre-
dential for the AWS S3 application. Decryption keys are only
shared with the Veracruz runtime inside an attested isolate.

We benchmark by passing a 1920×1080 video to the object
detection program, which decodes frame by frame, converts,
downscales, and passes frames to the ML model. We compare
four configurations on two different platforms:

• On EC2, a native x86-64 binary on Amazon Linux;
a Wasm binary under Wasmtime-0.27; a Wasm binary
inside Veracruz as a Linux process; a Wasm binary inside
Veracruz on AWS Nitro Enclaves. The video is 240
frames long and fed to the YOLOv3-608 model [79].

• On RPi4: a native AArch64 binary on Ubuntu 18.04
Linux; a Wasm binary under Wasmtime-0.27; a Wasm
binary inside Veracruz as a Linux process; a Wasm bi-
nary inside Veracruz on IceCap. Due to memory limits
the video is 240 frames long and fed to the YOLOv3-tiny
model [79].

We take the native x86-64 configuration as our baseline, and
present average runtimes for each configuration, along with
observed extremes, in Fig. 4.

EC2 results Wasm (with experimental SIMD support in
Wasmtime) has an overhead of ∼39% over native code; most
CPU cycles are spent in matrix multiplication, which the na-
tive compiler can better autovectorize than the Wasm compiler.
The vast majority of execution time is spent in neural network
inference, rather than video decode or image downscaling.
Since execution time is dominated by the Wasm execution,
Veracruz overhead is negligible. A ∼5% performance dis-
crepancy exists between Nitro and Wasmtime, which could
originate from our observation that Nitro is slower at loading
data into an enclave, but faster at writing, though Nitro runs a
different kernel with a different configuration, on a separate
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(large dataset) on EC2. gmean shows the geometric mean of
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CPU, making this hard to pinpoint. Deployment overheads
for Nitro are presented in Table 2, showing a breakdown of
overheads for provisioning a new Veracruz instance.

RPi4 results The smaller ML model significantly improves
inference performance at the expense of accuracy. Wasm has
an overhead of ∼10% over native code, smaller than the gap
on EC2, and could be due to reduced vectorization support
in GCC’s AArch64 backend. Veracruz overhead is again
negligible, though IceCap induces an overhead of ∼3% over
Veracruz-Linux. This observation approximately matches
the overhead of ∼2% for CPU-bound workloads measured in
Fig. 1, explained by extra context switching through trusted
resource management services during scheduling operations.

Using “native modules”, introduced in §4.3, explicit sup-
port for neural network inference could be added to the Ver-
acruz runtime, though our results above suggest a max ∼38%
performance boost by pursuing this, likely less due to the costs
of marshalling data between the native module and Veracruz
file system. For larger performance boosts, dedicated ML ac-
celeration could be used, requiring support from the Veracruz
runtime, though establishing trust in accelerators outside the
isolate is hard, with PCIe attestation still a work-in-progress.

5.3 Further comparisons
PolyBench/C microbenchmarks We further evaluate the
performance of Veracruz on compute-bound programs using
the PolyBench/C suite (version 4.2.1-beta) [75], a suite of
small, simple computationally-intensive kernels. We compare
execution time of four different configurations on the EC2 in-
stance running Amazon Linux 2: a native x86-64 binary; a
Wasm binary under Wasmtime-0.27; a Wasm binary under
Veracruz as a Linux process; and a Wasm binary executing
under Veracruz in an AWS Nitro Enclave. We take x86-64 as
our baseline, and present results in Fig. 6. Wasmtime’s over-
head against native CPU execution is relatively small with
a geometric mean of ∼13%, though we observe that some
test programs execute even faster under Wasmtime than when
natively compiled. Again, we compile our test programs with
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Wasmtime’s experimental support for SIMD proposal, though
this boosts performance for only a few programs. Veracruz-
Linux doesn’t exhibit a visible overhead compared to Wasm-
time, which is expected as most execution time is spent in
Wasmtime, and the presence of the Veracruz VFS is largely
irrelevant for CPU-bound programs. Veracruz-Nitro exhibits
a small but noticeable overhead (∼3%) compared to Veracruz-
Linux, likely due to the reasons mentioned in §5.2.

VFS performance We evaluate Veracruz VFS I/O perfor-
mance, previously discussed in §4.2. Performance is mea-
sured by timing common granular file-system operations and
dividing by input size, to find the expected bandwidth.

Results gathered on Core i7 test platform with a swap
size of zero so that measurements would not be invalidated
by physical disk access, are presented in Fig. 7. Here, read
denotes bandwidth of file read operations, write denotes band-
width of file write operations with no initial file, and update
denotes bandwidth of file write operations with an existing
file. We use two access patterns, in-order and random, to
avoid measuring only file-system-friendly access patterns.
All random inputs, for both data and access patterns, used re-
producible, pseudorandom data generated by xorshift64 to
ensure consistency between runs. All operations manipulate
a 64 MiB file with 16 KiB buffer size—in practice, we expect
most files will be within an order of magnitude of this size.

We compare variations of our VFS against Linux’s tmpfs,
the standard in-memory filesystem for Linux. Veracruz copy
moves data between the Wasm’s sandboxed memory and the
VFS through two copies, one at the Wasi API layer, and one
at the internal VFS API layer. Veracruz no-copy improved
on this by performing a single copy directly from the Wasm’s
sandboxed memory into the destination in the VFS. This
was made possible thanks to Rust’s borrow checker, which
is able to express the temporarily shared ownership of the
Wasm’s sandboxed memory without sacrificing memory or
lifetime safety. In theory this overhead can be reduced to zero
copies through memmap, however this API is not available in
standard Wasi. Veracruz no-copy+soo is our latest design,
extending the no-copy implementation with a small-object
optimization (SOO) iovec implementation—a Wasi structure
describing a set of buffers containing data to be operated on,
which for the majority of operations contain a reference to a
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Figure 8: SEAL and Veracruz computation performance

single buffer. Through this, we inline two or fewer buffers
into the iovec structure itself, completely removing memory
allocations from the read and write path for all programs we
tested with. Performance impact is negligible, however.

Being in an-memory filesystem, the internal representation
is relatively simple: directories and a global inode table are
implemented using hash tables, with each file represented
as a vector of bytes. While apparently naïve, these data-
structures have seen decades of optimization for in-memory
performance, and even sparse files perform efficiently due
to RAM over-commitment by the runtimes. However, we
were still surprised to see very close performance between Ve-
racruz and tmpfs, with Veracruz nearly doubling the tmpfs
performance for reads, likely due to the overhead of kernel
syscalls necessary to communicate with tmpfs in Linux. (Un-
fortunately tmpfs is deeply integrated into the Linux VFS
layer, so it is not possible to compare with tmpfs in isolation.)

Both Veracruz and tmpfs use hash tables to store directory
information, with the file data-structure and memory allocator
representing significant differences. In Veracruz we use byte
vectors backed by the runtime’s general purpose allocator,
whereas tmpfs uses a tree of pages backed by the Linux
VFS’s page cache, which acts as a cache-aware fixed-size
allocator. We expect this page cache to have a much cheaper
allocation cost, at the disadvantage of storing file data in
non-linear blocks of memory—observable in the difference
between the write and update measurements. For write,
tmpfs outperforms Veracruz due to faster memory allocations
and no unnecessary copies, while update requires no memory
allocation, and has more comparable performance.

Fully-homomorphic encryption An oft-suggested use-
case for fully-homomorphic encryption (FHE, hencefoth) is
protecting delegated computations. We briefly compare Ver-
acruz against SEAL [61], a leading FHE library, in computing
a range of matrix multiplications over square matrices of var-
ious dimensions. Algorithms in both cases are written in C,
though floating point arithmetic is replaced by the SEAL mul-
tiplication function for use with FHE. Results are presented
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Figure 9: Execution times of Veracruz and Apache Teaclave

in Fig. 8. Our results demonstrate that overheads for FHE are
impractical, even for simple computations.

Teaclave Apache Teaclave [33] is a privacy-preserving
FaaS infrastructure built on Intel SGX, supporting Python and
Wasm with a custom programming model using the Wamr [3]
interpreter. We compare the performance of Teaclave run-
ning under Intel SGX with Veracruz as a Linux process, both
on Core i7, and Veracruz on AWS Nitro enclaves on EC2—
admittedly an imperfect comparison, due to significant dif-
ferences in design, isolation technology, Wasm runtime, and
hardware between the two. We run the PolyBench/C suite
with its mini dataset—Teaclave’s default configuration er-
rors for larger datasets—and measure end-to-end execution
time, which includes initialization, provisioning, execution
and fetching the results, which we present in Fig. 9. While Ve-
racruz has better performance than Teaclave when executing
Wasm—with Veracruz under AWS Nitro exhibiting a mean
2.11× speed-up compared to Teaclave in simulation mode,
and faster still than Teaclave in SGX—the fixed initial over-
head of Veracruz, ∼4s in Linux and ∼2.7s in AWS Nitro,
dominates the overall overhead in either case.

6 Closing remarks

We have introduced Veracruz, a framework for designing and
deploying privacy-preserving delegated computations among
a group of mutually mistrusting principals, using isolates as
a “neutral ground” to protect computations from prying or
interference. In addition to supporting a number of hardware-
backed Confidential Computing technologies—such as AWS
Nitro Enclaves and Arm Confidential Computing Architecture
Realms—Veracruz also supports pragmatic “software isolates”
through IceCap. IceCap makes use of the high-assurance
seL4 microkernel, on Armv8-A platforms without any other
explicit support for Confidential Computing, to provide strong
isolation guarantees for virtual machines.

Veracruz, with IceCap, provides a uniform programming
and attestation model across emerging and “legacy” hard-
ware platforms, easing the deployment of delegated computa-
tions. Both projects are open-source [45, 89], and Veracruz is
adopted by the LF’s Confidential Computing Consortium.
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Related work Isolates have been used to protect a zoo
of computations of interest, e.g., ML [20, 54, 72, 83, 85]
and genomic computations [21, 56, 59], and have been used
to emulate or speed up cryptographic techniques such as
functional encryption [36] and secure multi-party computa-
tions [35, 40, 76]. These can be seen as use-cases, specialized
with a particular policy and program, of Veracruz.

OpenEnclave [73] provides a common development plat-
form for SGX Enclaves and TrustZone trusted applications.
Veracruz provides a higher-level of abstraction than OpenEn-
clave, and includes various support libraries, client code, and
attestation protocols to ease the provisioning of programs into
an isolate. Veracruz also supports a wider range of isolates,
including both hardware- and software-isolates.

Previous work [52] suggested a framework similar to Ver-
acruz, but never implemented it. Google Oak [39], Profian
Enarx [77], Apache Teaclave [5], Fortanix Confidential Com-
puting Manager [37] and SCONE [8] are similar to Veracruz,
though significant differences exist. Oak’s emphasis is in-
formation flow control, while Enarx, Fortanix, and SCONE
protect the integrity of legacy computations, either requiring
recompilation to Wasm, or supporting containerized work-
loads under SGX, respectively. Apache Teaclave is the most
similar project, discussed in §5, and we perform significantly
better. The proxy attestation service, and our certificate-based
attestation protocol, especially suitable for clients on resource-
constrained devices, is also unique.

Protected KVM (pKVM) [31, 34] is an attempt to minimize
the TCB of KVM, enabling virtualization-based confidential
computing on mobile platform, and similar in spirit to IceCap.
pKVM, with an EL2 kernel specifically designed for the task,
may have higher performance than IceCap, but will not benefit
from the formal verification effort invested in seL4.

OPERA [23] places a proxy between client code and the
Intel Attestation Service, exposing the same EPID protocol
to clients as the web-service exposes. The Veracruz proxy ex-
poses a potentially different protocol to client code, compared
to the native protocol, due to the variety of isolates Veracruz
supports. Intel’s Data Center Attestation Primitives (DCAP),
also serves similar use-cases, reducing the number of calls to
an external attestation service when authenticating attestation
tokens, though is limited to use with Intel SGX.

Ongoing and future work The proxy attestation service,
which currently signs each generated certificate with the same
key, could sign certificates for different isolation technologies
with different keys, each associated with a different root CA
certificate. With this, a global policy could choose which tech-
nology to support based on the selection of root CA certificate
embedded in the policy, and if multiple isolation technologies
were to be supported, more than one root CA certificate could
be embedded. The proxy attestation server could also main-
tain multiple Root CA certificates, arranged into a “decision
tree of certificates”, with the server choosing a CA certificate

to use when signing the isolate’s certificate from the tree,
following a path from the root described by characteristics
of the isolate technology itself (e.g., name of the manufac-
turer, whether memory encryption is supported, and so on).
Again, the certificate associated with the security profile of the
desired isolation technology can be embedded in the policy.

We also aim to bound the intensional and extensional prop-
erties of programs provisioned into Veracruz. Pragmatically,
cryptographic operations are perhaps most sensitive to timing
attacks, and we aim to provide a limited defense by sup-
plying a constant-time cryptography implementation—using
mbedtls [60]—via the native module facility discussed in
§4.3. Moreover, we aim to explore the use of a statically veri-
fied, constant-time virtual machine to gives users the option
to statically verify timing properties of their programs—an
area of significant recent academic interest—though likely at
the cost of limiting their program to constant-time constructs,
which is intractable for general-purpose programming. Us-
ing FaCT [19] Veracruz could provide flexible, verifiably
constant-time components such as virtual machines or do-
main specific functions, while the CT-Wasm [95] extension
for Wasm also provides verifiable, constant-time guarantees
as a set of secrecy-aware types and bytecode instructions.
CT-Wasm has not yet adopted by the Wasm committee.

We are also continuing work on statically verifying the
Software Fault Isolation (SFI, henceforth) safety of sand-
boxed applications. SFI systems, such as Wasm, add runtime
checks to loads, stores, and control flow transfers to ensure
sandboxed code cannot escape from its address space region,
though bugs in SFI compilers can (and do) incorrectly remove
these checks and introduce bugs that let untrusted code escape
its sandbox [12, 43]. To address this—following other SFI
systems [65, 99, 102]—we have built a static verifier for bi-
nary code executed by Veracruz, implemented as an extension
of VeriWasm [49], an open-source SFI verifier for compiled
Wasm code. To adapt VeriWasm to Veracruz, we added sup-
port for AArch64, and ported VeriWasm from the Lucet [17]
toolchain to Wasmtime, as used by Veracruz. We plan to
further extend VeriWasm to check other properties besides
software fault isolation, e.g., Spectre [70] resistance.

Finally, observe that the provisioned program, π, is either
kept classified by its owner, or is declassified to a subset of the
other principals in the computation (maybe all). In the former
case, other principals either must either implicitly trust that π

behaves in a particular way, or establish some other mecha-
nism bounding the behavior of the program, out-of-band of
Veracruz. We aim for a middle ground, allowing a program
owner to declassify runtime properties of the program, en-
forced by Veracruz, while retaining secrecy of the program
binary (using e.g., [66]).
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